306 Chaotic Modelling and Simulation
Birkhoff, G. D. (1932). Sur l’existence de r
´
egions d’instabilit
´
ee dynamique. Ann.
Inst. H. Poincar´e 2, 369.
Birkhoff, G. D. (1935). Sur le probl
`
eme restreint des trois corps. Ann. Scuola Norm.
Sup. Pisa 4, 267.
Bolotin, V. V., A. A. Grishko, A. N. Kounadis, C. Gantes, and J. B. Roberts (1998).
Influence of initial conditions on the postcritical behavior of a nonlinear aeroelas-
tic system. Nonlinear Dyn. 15(1), 63–81.
Borland, L. (1996). Simultaneous modeling of nonlinear determistic and stochastic
dynamics. Physica D 99(2-3), 175–190.
Borland, L. (1998). Microscopic dynamics of the nonlinear Fokker-Planck equation:
A phenomenological model. Phys. Rev. E 57(6), 6634–6642.
Borland, L. and H. Haken (1992). Unbiased determination of forces causing ob-
served processes. The case of additive and weak multiplicative noise. Z. Phys. B -
Condens. Matter 81, 95.
Borland, L. and H. Haken (1993a). Learning the dynamics of two-dimensional
stochastic Markov processes. Open Syst. and Inf. Dyn. 1(3), 311.
Borland, L. and H. Haken (1993b). On the constraints necessary for macroscopic
prediction of stochastic time-dependent processes. ROMP 33, 35.
Boudourides, M. A. and N. A. Fotiades (2000). Piecewise linear interval maps both
expanding and contracting. Dyn. Stab. Syst. 15(4), 343–351.
Bountis, T. (1992). Chaotic dynamics. Theory and practice. New York: Plenum
Press.
Bountis, T., L. Drossos, and I. C. Percival (1991a). Nonintegrable systems with
algebraic singularities in complex time. J. Phys. 24, 3217.
Bountis, T., L. Drossos, and I. C. Percival (1991b). On nonintegrable systems with
square root singularities in complex time. Phys. Lett. A 159, 1.
Bountis, T. and R. H. Helleman (1981). On the stability of periodic orbits of two-
dimensional mappings. J. Math. Phys. 22, 1867.
Bountis, T., L. Karakatsanis, G. Papaioannou, and G. Pavlos (1993). Determinism
and noise in surface temperature time series. Ann. Geophys. 11, 947–959.
Bountis, T., V. Papageorgiou, and M. Bier (1987). On the singularity analysis of
intersecting separatrices in near-integrable dynamical systems. Physica D 24, 292.
Bountis, T., H. Segur, and F. Vivaldi (1982). Integrable Hamiltonian systems and the
Painlev
´
e property. Phys. Rev. A 25, 1257.
Bountis, T. C. (1981). Period doubling bifurcations and universality in conservative
systems. Physica D 3, 577–589.