References
Acheson, D. (1997). From calculus to chaos. Oxford: Oxford University Press.
Adachi, S., M. Toda, and K. Ikeda (1988a). Potential for mixing in quantum chaos.
Phys. Rev. Lett. 61, 635.
Adachi, S., M. Toda, and K. Ikeda (1988b). Quantum-classical correspondence in
many-dimensional quantum chaos. Phys. Rev. Lett. 61, 659.
Adler, M. and P. van Moerbeke (1994). The Kowalevski and H
´
enon-Heiles motions
as Manakov geodesic flows on SO(4). Comm. Math. Phys. 113, 649.
Alligood, K. T. and T. Sauer (1988). Rotation numbers of periodic orbits in the
H
´
enon’s map. Commun. Math. Phys. 120, 105.
Alligood, K. T., T. D. Sauer, and J. A. Yorke (1997). Chaos; An introduction to
dynamical systems. Berlin: Springer-Verlag.
Almirantis, Y. and M. Kaufman (1992). Numerical study of travelling waves in a
reaction-diffusion system: response to a spatiotemporal forcing. Int. J. of Bifurca-
tion and Chaos 2(1), 51–60.
Almirantis, Y. and M. Kaufman (1995). Chiral selection of rotating waves in a
reaction-diffusion system: The effect of a circularly polarized electromagnetic
field. Int. J. of Bifurcation and Chaos 5(2), 507–518.
Almirantis, Y. and G. Nicolis (1987). Morphogenesis in an asymmetric medium.
Bull. Math. Biol. 47, 519–530.
Alsing, P. M., A. Gavrielides, and V. Kovanis (1994a). History-dependent control of
unstable periodic orbits. Phys. Rev. E 50, 1968.
Alsing, P. M., A. Gavrielides, and V. Kovanis (1994b). Using neural networks for
controlling chaos. Phys. Rev. E 49(2), 1225–1231.
Androulakakis, S. P., B. Greenspan, and T. T. H. H. Qammar (1991). Practical con-
siderations on the calculation of the uncertainty exponent and the fractal dimen-
sion of basin boundaries. Int. J. of Bifurcation and Chaos 1(2), 327–333.
Antoniou, I., V. Basios, and F. Bosco (1996). Probabilistic control of chaos: The
beta-adic R
´
enyi map under control. Int. J. of Bifurcation and Chaos 6(8), 1563–
1573.
Aref, H. (1983). Integrable, chaotic, and turbulent vortex motion in two-dimensional
flows. Ann. Rev. Fluid Mech. 15, 345.
303