269 Calculating Effi cient Portfolios When There Are No Short-Sale Restrictions
The formulas in the cells are as follows:
•
For z we use the array function MMult(MInverse(A3 : D6),F3 : F6). The
range A3 : D6 contains the variance-covariance matrix and the cells
F3 : F6 contain the expected returns of the assets.
•
For x: Each cell contains the associated value of z divided by the sum
of all the z’s. Thus, for example, cell F12 contains the formula =A12/SUM
($A$12:$A$15).
To fi nd the second envelope portfolio we now solve this system for
c = 0.04 (cell B8).
10
11
12
13
14
15
16
ABCDEFG H
Computing an envelope portfolio with constant = 0
z
Envelope
portfolio
x
0.1019 <-- {=MMULT(MINVERSE(A3:D6),F3:F6)} 0.0540 <-- =A12/SUM($A$12:$A$15)
0.5657 0.2998
0.1141 0.0605
1.1052 0.5857
Sum 1.0000 <-- =SUM(F12:F15)
18
19
20
21
22
23
24
ABCDEFG H
Computing an envelope portfolio with constant = 0.04
z
Envelope
portfolio
y
0.0330 <-- {=MMULT(MINVERSE(A3:D6),G3:G6)} 0.0423 <-- =A20/SUM($A$20:$A$23)
0.1959 0.2514
0.0468 0.0601
0.5035 0.6462
Sum 1.0000 <-- =SUM(F20:F23)
The portfolio y in cells F20 : F23 is, by the results of Proposition 1, an
envelope portfolio. This vector z associated with y is calculated in a
manner similar to that of the fi rst vector, except that the array function
in the cells is MMult(MInverse(A3 : D6),G3 : G6), where G3 : G6 contains
the vector of expected returns minus the constant 0.04.
To complete the basic calculations, we compute the means, standard
deviations, and covariance of returns for portfolios x and y:
26
27
28
29
30
31
ABCDEFG H
E(x)
0.0693
E(x)
0.0710 <-- {=MMULT(TRANSPOSE(F20:F23),F3:F6)}
Var(x)
0.0367
Var(y)
0.0398 <-- {=MMULT(MMULT(TRANSPOSE(F20:F23),A3:D6),F20:F23)}
Sigma(x)
0.1917
Sigma(y)
0.1995 <-- =SQRT(F27)
Cov(x,y)
0.0376 <-- {=MMULT(MMULT(TRANSPOSE(F12:F15),A3:D6),F20:F23)}
Corr(x,y)
0.9842 <-- =C30/(B28*F28)