162
Ïðèìåð 3.12.
.
3
7
3
1
3
2
3
3
1
2
3
2
1
2
=−==
∫
x
dxx
Çàìåíà ïåðåìåííîé â îïðåäåëåííîì èíòåãðàëå îòëè÷àåòñÿ îò
çàìåíû ïåðåìåííîé â íåîïðåäåëåííîì èíòåãðàëå òåì, ÷òî:
1) íåîáõîäèìî èçìåíèòü ïðåäåëû èíòåãðèðîâàíèÿ;
2) âîçâðàùàòüñÿ ê ïåðâîíà÷àëüíîé ïåðåìåííîé íå íàäî.
Ïðèìåð 3.13. Ïîëüçóÿñü ôîðìóëîé Íüþòîíà-Ëåéáíèöà, âû÷èñ-
ëèòü îïðåäåëåííûé èíòåãðàë
∫
+
8
3
.
1
dx
x
x
Ðåøåíèå. ×òîáû èçáàâèòüñÿ îò èððàöèîíàëüíîñòè, ñäåëàåì
ïîäñòàíîâêó 1 + õ = t
2
. Òîãäà
.
3
32
2
3
8
3
3
27
2
3
2
)1(2
2)1(
38
23
2
1
1
2
3
3
3
2
2
3
2
2
8
3
2
=
+−−=
−=
=−=
−
=
=→=
=→=
=
=+
=
+
∫∫∫
t
t
dtt
t
tdtt
tx
tx
tdtdx
tx
x
xdx
Ôîðìóëà èíòåãðèðîâàíèÿ ïî ÷àñòÿì â îïðåäåëåííîì èíòåãðàëå:
∫∫
−=
b
a
b
a
a
b
xduxvxvxuxdvxu
),()()()()()(
(3.7)
ãäå
a
b
xvxu
)()(
âû÷èñëÿåòñÿ ïî ôîðìóëå (3.6).
3.2.3. Ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà
Ãåîìåòðè÷åñêèé ñìûñë îïðåäåëåííîãî èíòåãðàëà (3.4) ñîñòîèò
â òîì, ÷òî åñëè ãðàôèê ôóíêöèè y = f (x) îãðàíè÷èâàåò êðèâîëè-
íåéíóþ òðàïåöèþ Φ = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f (x)}, òî åãî âåëè÷è-
íà ðàâíà ïëîùàäè ýòîé òðàïåöèè. ×òîáû óáåäèòüñÿ â ýòîì, äîñòà-