x Contents
7 Estimating Dimensions with Condence ............................................................................231
7.1 Scaling or Not Scaling? That Is the Question ..................................................................... 231
7.1.1 Identifying Scaling Properties ............................................................................... 232
7.1.1.1 Procedure 1: R² – SSR Procedure ........................................................233
7.1.1.2 Procedure 2: Zero-Slope Procedure ....................................................234
7.1.1.3 Procedure 3: Compensated-Slope Procedure ......................................238
7.1.2 Scaling, Multiple Scaling, and Multiscaling: Demixing Apples
and Oranges ........................................................................................................... 239
7.2 Errors Affecting Fractal Dimension Estimates ..................................................................241
7.2.1 Geometrical Constraint, Shape Topology, and Digitization Biases ......................241
7.2.2 Isotropy ..................................................................................................................243
7.2.3 Stationarity ............................................................................................................ 243
7.2.3.1 Statistical Stationarity ..........................................................................243
7.2.3.2 Fractal Stationarity ..............................................................................244
7.3 Dening the Condence Limits of Fractal Dimension Estimates ......................................246
7.4 Performing a Correct Analysis ...........................................................................................246
7.4.1 Self-Similar Case ...................................................................................................247
7.4.2 Self-Afne Case ....................................................................................................247
8 From Fractals to Multifractals ............................................................................................249
8.1 A Random Walk toward Multifractality .............................................................................249
8.1.1 A Qualitative Approach to Multifractality ............................................................249
8.1.2 Multifractality So Far ............................................................................................250
8.1.3 From Fractality to Multifractality: Intermittency ................................................. 253
8.1.3.1 A Bit of History.................................................................................... 253
8.1.3.2 Intermittency in Ecology and Aquatic Sciences .................................. 253
8.1.3.3 Dening Intermittency ......................................................................... 253
8.1.4 Variability, Inhomogeneity, and Heterogeneity: Terminological
Considerations ....................................................................................................... 255
8.1.5 Intuitive Multifractals for Ecologists ....................................................................257
8.2 Methods for Multifractals ...................................................................................................260
8.2.1 Generalized Correlation Dimension Function D(q) and
the Mass Exponents t(q) ........................................................................................260
8.2.1.1 Theory ..................................................................................................260
8.2.1.2 Application: Salinity Stress in the Cladoceran Daphniopsis
Australis ...............................................................................................262
8.2.2 Multifractal Spectrum f(a) ....................................................................................262
8.2.2.1 Theory .................................................................................................. 262
8.2.2.2 Application: Temperature Stress in the Calanoid Copepod Temora
Longicornis ..........................................................................................265
8.2.3 Codimension Function c(g) and Scaling Moment Function K(q) ..........................265
8.2.4 Structure Function Exponents z(q) ........................................................................268
8.2.4.1 Theory ..................................................................................................268
8.2.4.2 Eulerian and Lagrangian Multiscaling Relations for Turbulent
Velocity and Passive Scalars ................................................................ 271
8.3 Cascade Models for Intermittency ...................................................................................... 276
8.3.1 Historical Background ........................................................................................... 276
2782.indb 10 9/11/09 12:02:31 PM