
147
əɤ ɜɢɞɧɨ, ɩɪɢ ɡɛɿɥɶɲɟɧɧɿ ɱɢɫɥɚ ɫɬɭɩɟɧɿɜ ɜɿɥɶɧɨɫɬɿ n ɪɨɡɩɨɞɿɥɢ ɋɬɶɸɞɟɧɬɚ
ɚɫɢɦɩɬɨɬɢɱɧɨ ɧɚɛɥɢɠɚɸɬɶɫɹ ɞɨ ɧɨɪɦɚɥɶɧɨɝɨ ɪɨɡɩɨɞɿɥɭ. Ʉɨɥɢ ɨɛɫɹɝ ɜɢɛɿɪɤɢ
n ɫɬɚɽ «ɞɨɫɬɚɬɧɶɨ ɜɟɥɢɤɢɦ», ɬɨɛɬɨ ɩɪɚɤɬɢɱɧɨ
fo
n
, ɪɨɡɩɨɞɿɥɢ ɋɬɶɸɞɟɧɬɚ
ɡɛɿɝɚɸɬɶɫɹ ɡ ɧɨɪɦɚɥɶɧɢɦ ɪɨɡɩɨɞɿɥɨɦ. ɇɚɣɱɚɫɬɿɲɟ ɪɨɡɩɨɞɿɥɢ
ɋɬɶɸɞɟɧɬɚ ɜɢ-
ɤɨɪɢɫɬɨɜɭɸɬɶ ɭ ɫɬɚɬɢɫɬɢɱɧɢɯ ɜɢɫɧɨɜɤɚɯ ɳɨɞɨ
ɫɟɪɟɞɧɿɯ (ɞɢɜ. ɪɨɡɞɿɥ 5.4).
Ɋɨɡɩɨɞɿɥ F Ɏɿɲɟɪɚ ɦɨɠɧɚ ɨɬɪɢɦɚɬɢ, ɜɢɤɨɪɢɫɬɨɜɭɸɱɢ ɫɯɟɦɭ ɩɨɜɬɨɪɧɢɯ
ɜɢɩɪɨɛɭɜɚɧɶ, ɤɨɥɢ ɡ ɝɟɧɟɪɚɥɶɧɨʀ ɫɭɤɭɩɧɨɫɬɿ ɧɨɪɦɚɥɶɧɨ ɪɨɡɩɨɞɿɥɟɧɢɯ ɡɧɚɱɟɧɶ
ɡ ɩɚɪɚɦɟɬɪɚɦɢ (
ȝ=0 ɿ ı=1) ɜɢɩɚɞɤɨɜɢɦ ɦɟɬɨɞɨɦ ɫɩɨɱɚɬɤɭ ɮɨɪɦɭɸɬɶ ɩɟɪɲɭ
ɡɦɿɧɧɭ
ɏ
1
ɡ ɪɨɡɩɨɞɿɥɨɦ «ɯɿ-ɤɜɚɞɪɚɬ» ɿ ɫɬɟɩɟɧɹɦɢ ɜɿɥɶɧɨɫɬɿ n, ɚ ɩɨɬɿɦ ɧɟɡɚɥɟɠ-
ɧɢɦ ɲɥɹɯɨɦ ɮɨɪɦɭɸɬɶ ɞɪɭɝɭ ɡɦɿɧɧɭ
ɏ
2
ɡ ɪɨɡɩɨɞɿɥɨɦ «ɯɿ-ɤɜɚɞɪɚɬ» ɿ ɫɬɟɩɟɧɹ-
ɦɢ ɜɿɥɶɧɨɫɬɿ
m. ɇɨɜɚ ɜɢɩɚɞɤɨɜɚ ɜɟɥɢɱɢɧɚ, ɳɨ ɦɚɽ ɜɥɚɫɬɢɜɨɫɬɿ ɪɨɡɩɨɞɿɥɭ Ɏɿ-
ɲɟɪɚ, ɫɤɥɚɞɚɬɢɦɟɬɶɫɹ ɡ ɜɿɞɧɨɲɟɧɧɹ
m
X
n
X
F
21
. (3.66)
Ɏɭɧɤɰɿɹ ɳɿɥɶɧɨɫɬɿ ɪɨɡɩɨɞɿɥɭ Ɏɿɲɟɪɚ ɦɚɽ ɜɢɝɥɹɞ
2
1
2
2
1
22
2
),,(
mn
m
m
F
x
n
m
x
n
m
mn
mn
mnxf
¸
¹
·
¨
©
§
¸
¹
·
¨
©
§
¸
¹
·
¨
©
§
*
¸
¹
·
¨
©
§
*
¸
¹
·
¨
©
§
*
, (3.67)
ɞɟ
f
F
(x, n, m) – ɮɭɧɤɰɿɹ ɳɿɥɶɧɨɫɬɿ ɪɨɡɩɨɞɿɥɭ Ɏɿɲɟɪɚ; n ɿ m – ɱɢɫɥɨ ɫɬɭɩɟ-
ɧɿɜ ɜɿɥɶɧɨɫɬɿ; ī() – ɝɚɦɚ-ɮɭɧɤɰɿɹ.
ɇɚ ɪɢɫ. 3.52. ɩɨɤɚɡɚɧɨ ɪɨɡɪɚɯɭɧɤɢ ɿ ɝɪɚɮɿɤɢ ɳɿɥɶɧɨɫɬɿ ɪɨɡɩɨɞɿɥɭ Ɏɿɲɟɪɚ
ɞɥɹ ɬɪɶɨɯ ɧɚɛɨɪɿɜ ɫɬɭɩɟɧɿɜ ɜɿɥɶɧɨɫɬɿ n ɿ m (2 ɿ 3; 5 ɿ 4; 20 ɿ 4 ɜɿɞɩɨɜɿɞɧɨ).
Ⱦɥɹ ɪɨɡɪɚɯɭɧɤɭ ɪɨɡɩɨɞɿɥɭ Ɏɿɲɟɪɚ, ɧɚɩɪɢɤɥɚɞ,
ɡ ɱɢɫɥɨɦ ɫɬɭɩɟɧɿɜ ɜɿɥɶɧɨɫ-
ɬɿ
n=2 ɿ m=3 ɧɟɨɛɯɿɞɧɨ ɜɧɟɫɬɢ:
x
ɭ ɤɨɦɿɪɤɭ ȼ3 ɜɢɪɚɡ =EXP(ȽȺɆɆȺɇɅɈȽ((B$1+B$2)/2));
x
ɭ ɤɨɦɿɪɤɭ ȼ4 ɜɢɪɚɡ =EXP(ȽȺɆɆȺɇɅɈȽ(B$1/2));
x
ɭ ɤɨɦɿɪɤɭ ȼ5 ɜɢɪɚɡ =EXP(ȽȺɆɆȺɇɅɈȽ(B$2/2));
x
ɭ ɤɨɦɿɪɤɭ ȼ6 ɜɢɪɚɡ =B3/B4/B5*(B$2/B$1)^(B$2/2);
x
ɭ ɤɨɦɿɪɤɭ ȼ7 ɜɢɪɚɡ =B$6*$A8^(B$2/2-1)*(1+B$2/B$1*$A8)^(-(B$2+B$1)/2);