2.1.4 Methods of analysis: W ¼ f ðy
1
; y
2
; …; y
k
; x
1
; x
2
; …; x
n
Þ and not well‐behaved 65
2.1.5 Methods of analysis: gðW Þ¼f ðy
1
; y
2
; …; y
k
; x
1
; x
2
; …; x
n
; W Þ 67
2.2 Summary of scenarios (Table 2.1) 69
2.3 Scenario 1: A simple trad e‐off model 71
2.3.1 General assumptions 71
2.3.2 Mathematical assumptions 72
2.3.3 Plotting the fitness function 72
2.3.4 Finding the maximum using the calculus 73
2.3.5 Finding the maximum using a numerical approach 75
2.4 Scenario 2: Adding age structure may not affect the optimum 75
2.4.1 General assumptions 75
2.4.2 Mathematical assumptions 75
2.5 Scenario 3: Adding age‐specific mortality that affects the optimum 76
2.5.1 General assumptions 76
2.5.2 Mathematical assumptions 76
2.5.3 Plotting the fitness function 77
2.5.4 Finding the maximum using the calculus 79
2.5.5 Finding the maximum using a numerical approach 81
2.6 Scenario 4: Adding age‐specific mortality that affects the optimum and using
integration rather than summation
81
2.6.1 General assumptions 81
2.6.2 Mathematical assumptions 82
2.6.3 Plotting the fitness function 82
2.6.4 Finding the maximum using the calculus 84
2.6.5 Finding the maximum using a numerical approach 85
2.7 Scenario 5: Maximizing the Malthusian parameter,
r
, rather than expected
lifetime reproductive success, R
0
86
2.7.1 General assumptions 87
2.7.2 Mathematical assumptions 87
2.7.3 Plotting the fitness function 88
2.7.4 Finding the maximum using the calculus 89
2.7.5 Finding the maximum using a numerical approach 92
2.8 Scenario 6: Stochastic variation in parameters 93
2.8.1 General assumptions 94
2.8.2 Mathematical assumptions 94
2.8.3 Plotting the fitness function 95
2.8.4 Finding the maximum using the calculus 97
2.8.5 Finding the maximum using a numerical approach 99
2.9 Scenario 7: Discrete temporal variation in parameters 100
2.9.1 General assumptions 100
2.9.2 Mathematical assumptions 100
2.9.3 Plotting the fitness function 101
2.9.4 Finding the maximum using the calculus 102
2.9.5 Finding the maximum using numerical methods 104
vi CONTENTS