400 10 Higher-Dimensional Boundary-Value Problems
∇
2
u =0,r<1, 0 <θ<π, 0 <ϕ<2π,
u
r
(1,θ,ϕ)=f (θ, ϕ) ,
where
2π
0
π
0
f (θ, ϕ)sinθdθdϕ=0.
12. Find the solution of the initial boundary-value problem
u
tt
= c
2
∇
2
u, 0 <x<1, 0 <y<1,t>0,
u (x , y, 0) = sin
2
πx sin πy, u
t
(x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
u (0,y,t)=0,u(1,y,t)=0, 0 ≤ y ≤ 1,t>0,
u (x , 0,t)=0,u(x, 1,t)=0, 0 ≤ x ≤ 1,t>0.
13. Obtain the solution of the problem
u
tt
= c
2
∇
2
u, r < a, 0 <θ<2π, t > 0,
u (r, θ, 0) = f (r, θ) ,u
t
(r, θ, 0) = g (r, θ) ,u(a, θ, t)=0.
14. Determine the temperature distribution in a rectangular plate with ra-
diation from its surface. The temperature distribution is described by
u
t
= k (u
xx
+ u
yy
) − h (u − u
0
) , 0 <x<a, 0 <y<b, t>0,
u (x , y, 0) = f (x, y) ,
u (0,y,t)=0,u(a, y, t)=0,
u (x , 0,t)=0,u(x, b, t)=0,
where k, h and u
0
are constants.
15. Solve the heat conduction problem in a circular plate
u
t
= k
u
rr
+
1
r
u
r
+
1
r
2
u
θθ
,r<1, 0 <θ<2π, t > 0,
u (r, θ, 0) = f (r, θ) ,u(1,θ,t)=0.
16. Solve the initial boundary-value problem
u
tt
= c
2
∇
2
u, 0 <x<1, 0 <y<1, 0 <z<1,t>0,
u (x , y, z, 0) = sin πx sin πy sin πz ,