362 10 Higher-Dimensional Boundary-Value Problems
u (0,y,z)=u (π, y, z)=0
u (x , 0,z)=u (x, π, z)=0
u (x , y, π)=0,u(x, y, 0) = f (x, y) , 0 ≤ x ≤ π, 0 ≤ y ≤ π.
We assume a nontrivial separable solution in the form
u (x , y, z)=X (x) Y (y) Z (z) .
Substituting this in the Laplace equation, we obtain
X
′′
YZ+ XY
′′
Z + XY Z
′′
=0.
Division by XY Z yields
X
′′
X
+
Y
′′
Y
= −
Z
′′
Z
.
Since the right side depends only on z and the left side is independent of
z, both terms must be equal to a constant. Thus, we have
X
′′
X
+
Y
′′
Y
= −
Z
′′
Z
= λ.
Bythesamereasoning,wehave
X
′′
X
= λ −
Y
′′
Y
= µ.
Hence, we obtain the three ordinary differential equations
X
′′
− µX =0,
Y
′′
− (λ − µ) Y =0,
Z
′′
+ λZ =0.
Using the boundary conditions, the eigenvalue problem for X,
X
′′
− µX =0,
X (0) = X (π)=0,
yields the eigenvalues µ = −m
2
for m =1, 2, 3,... and the correspondin g
eigenfunctions sin mx.
Similarly, the eigenvalue problem for Y
Y
′′
− (λ − µ) Y =0,
Y (0) = Y (π)=0,
gives the eigenvalues λ −µ = −n
2
where n =1, 2, 3,...and th e correspond-
ing eigenfunctions sin ny.