10.8 Waves in Three Dimensions 379
d
dx
1 − x
2
dy
dx
+ λy =0, −1 ≤ x ≤ 1, (10.7.19)
or, equivalently,
1 − x
2
d
2
y
dx
2
− 2x
dy
dx
+ λy =0. (10.7.20)
This equation was completely solved in Section 8.9. Equation (10.7.19) is
the well-known Sturm–Liouville equation with y (−1) and y (+1) finite. The
results are
λ = λ
n
= n (n +1),y(x)=P
n
(x) ,n=0, 1, 2, 3,...,
where P
n
(x) is the Legendre polynomial of degree n.
10.8 Waves in Three Dimensions
The propagation of waves due to an initial disturbance in a rectangular vol-
ume is best d escribed by the solution of the initial boundary-value problem
u
tt
= c
2
∇
2
u, 0 <x<a, 0 <y<b, 0 <z<d, t>0,
(10.8.1)
u (x , y, z, 0) = f (x, y, z) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ d, (10.8.2)
u
t
(x, y, z, 0) = g (x, y, z) , 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ d, (10.8.3)
u (0,y,z,t)=0,u(a, y, z, t)=0, (10.8.4)
u (x , 0,z,t)=0,u(x, b, z, t)=0, ( 10.8.5)
u (x , y, 0,t)=0,u(x, y, d, t)=0. (10.8.6)
We assume a nontrivial separable solution in the form
u (x , y, z, t)=U (x, y, z) T (t) .
The separated equations are given by
T
′′
+ λc
2
T =0, (10.8.7)
∇
2
U + λU =0. (10.8.8)
We assume that U has the n ontrivial separable solu tion in the form
U (x, y, z)=X (x) Y (y) Z (z) .
Substitution of this into equation (10.8.8) yields
X
′′
− µX =0, (10.8.9)
Y
′′
− νY =0, (10.8.10)
Z
′′
+(λ + µ + ν) Z =0. (10.8.11)