10.13 Exercises 401
u
t
(x, y, z, 0) = 0,
u (0,y,z,t)=u (1,y,z,t)=0,
u (x , 0,z,t)=u (x, 1,z,t)=0,
u (x , y, 0,t)=u (x, y, 1,t)=0.
17. Solve
u
tt
+ ku
t
= c
2
∇
2
u, 0 <x<a, 0 <y<b, 0 <z<d, t>0,
u (x , y, z, 0) = f (x, y, z) ,u
t
(x, y, z, 0) = g (x, y, z) ,
u (0,y,z,t)=u (a, y, z, t)=0,
u (x , 0,z,t)=u (x, b, z, t)=0,
u (x , y, 0,t)=u (x, y, d, t)=0.
18. Obtain the solution of the problem for t>0,
u
tt
= c
2
u
rr
+
1
r
u
r
+
1
r
2
u
θθ
+ u
zz
,r<a,0 <θ<2π, 0 <z<l,
u (r, θ, z, 0) = f (r, θ, z) ,u
t
(r, θ, z, 0) = g (r, θ, z) ,
u (a , θ, z, t)=0,u(r, θ, 0,t)=u (r, θ, l, t)=0.
19. Determine the solution of th e heat conduction problem
u
t
= k ∇
2
u, 0 <x<a, 0 <y<b, 0 <z<c, t>0,
u (x , y, z, 0) = f (x, y, z) ,
u
x
(0,y,z,t)=u
x
(a, y, z, t)=0,
u
y
(x, 0,z,t)=u
y
(x, b, z, t)=0,
u
z
(x, y, 0,t)=u
z
(x, y, c, t)=0.