c01 JWPR067-Mench December 19, 2007 19:42 Char Count=
References 27
3. J. M
¨
uller, G. Frank, K. Colbow, and D. Wilkinson, “Transport/Kinetic Limitations and Effi-
ciency Losses,” in Handbook of Fuel Cells—Fundamentals, Technology and Applications,Vol.4,
W. Vielstich, A. Lamm, and H. A. Gasteiger, Eds., Wiley, 2003, pp. 847–855.
4. R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, “Development of Solid-Oxide
Fuel Cells that Operate at 500
◦
C,” J. Electrochem. Soc., Vol. 146, No. 4, pp. 1273–1278, 1999.
5. R. F. Service, “New Tigers in the Fuel Cell Tank,” Science, Vol. 288, pp. 1955–1957, 2000.
6. http://www.siemenswestinghouse.com/en/fuelcells/hybrids/index.cfm.
7. U.S. Department of Energy SECA Program, http://www.netl.doe.gov/seca/, 2006.
8. B. S. Baker, Ed., Hydrocarbon Fuel Cell Technology, Academic, New York, 1965.
9. J. M. King, and H. R. Kunz, “Phosphoric Acid Electrolyte Fuel Cells,” in Handbook of Fuel
Cells—Fundamentals, Technology and Applications, Vol. 1, W. Vielstich, A. Lamm, and H. A.
Gasteiger, Eds., Wiley, 2003, pp. 287–300.
10. Fuel Cell Handbook, 5th Ed., EG&G Services Parsons, Science Applications International Cor-
poration, San Diego, CA, 2000.
11. M. Zhao, C. Rice, R. I. Masel, P. Waszczuk, and A. Wieckowski, “Kinetic Study of Electro-
Oxidation of Formic Acid on Spontaneously-Deposited Pt/Pd Nanoparticles—CO Tolerant Fuel
Cell Chemistry,” J. Electrochem. Soc., Vol. 151, No. 1, pp. A131–A136, 2004.
12. M. M. Mench, H. M. Chance, and C. Y. Wang “Dimethyl Ether Polymer Electrolyte Fuel Cells
for Portable Applications” J. Electrochem. Soc., Vol. 151, pp. A149–A150, 2004.
13. E. Peled, T. Duvdevani, A. Aharon, and A. Melman, “New Fuels as Alternatives to Methanol for
Direct Oxidation Fuel Cells,” Electrochem. Solid-State Lett., Vol. 4, No. 4, pp. A38–A41, 2001.
14. C. Lamy and E. M. Belgsir, “Other Direct-Alcohol Fuel Cells,” in Handbook of Fuel
Cells—Fundamentals, Technology and Applications, Vol. 1, W. Vielstich, A. Lamm, and
H. A. Gasteiger, Eds., Wiley, 2003, pp. 323–334.
15. H. Liu, R. Narayanan, and B. Logan, “Production of Electricity during Wastewater Treatment
Using a Single Chamber Microbial Fuel Cell,” Environ. Sci. Technol., Vol. 38, pp. 2281–2285,
2004.
16. T. Chen, S. Calabrese Barton, G. Binyamin, Z. Gao, Y. Zhang, H.-H. Kim, and A. Heller, “A
Miniature Biofuel Cell,” J. Am. Chem. Soc. Vol. 123, pp. 8630–8631, 2001.
17. E. Katz, A. N. Shipway, and I. Willner, “Biochemcial Fuel Cells,” in Handbook of Fuel
Cells—Fundamentals, Technology and Applications, Vol. 1, W. Vielstich, A. Lamm, and
H. A. Gasteiger, Eds., Wiley, 2003, pp. 355–381.
18. S. C. Barton, J. Gallaway, and P. Atanassov, “Enzymatic Biofuel Cells for Implantable and
Microscale Devices,” Chem. Rev., Vol. 104, pp. 4867–4886, 2004.
19. A. Baker and K.-A. Adamson, “Fuel Cell Today Market Study: Large Stationary Applications,”
www.fuelcelltoday.com, article 1046, accessed September 28, 2005.
20. D. Sperling and J. S. Cannon, The Hydrogen Energy Transition: Cutting Carbon from Trans-
portation, Elsevier, 2004.
21. Committee on Alternatives and Strategies for Future Hydrogen Production and Use Board on
Energy and Environmental Systems, Division on Engineering and Physical Sciences, The Hydro-
gen Economy: Opportunities, Costs, Barriers, and R&D Needs, National Research Council and
National Academy of Engineering of the National Academies, The National Academies Press,
Washington, DC, 2003.
22. A. Baker, “Fuel Cell Market Survey: Automotive Hydrogen Infrastructure,” http://www
.fuelcelltoday.com, article 988, May 25, 2005.
23. Toshiba’s Methanol Fuel Cell, Digital Photography Review, June 24, 2004.