
338 Solutions
(−2, 2, 1), (−1, 1, 2), (−3, 3, 3), (−1, 1, 4), (−1, 1, 5);
(−2, 0, 1), (−1, 0, 2), (−3, 0, 3), (−1, 0, 4), (−1, 0, 5);
(−2, −2, 1), (−1, −1, 2), (−3, −3, 3), (−1, −1, 4), (−1, −1, 5);
(2, −2, 1), (1, −1, 2), (3, −3, 3), (1, −1, 4), (1, −1, 5);
(2, 0, 1), (1, 0, 2), (3, 0, 3), (1, 0, 4), (1, 0, 5).
9.6. b
0,0
(2, 3, 0), b
1,0
(1, 5, 2), b
2,0
(1, 7, −1), b
3,0
(2, 9, −3), b
0,1
(4, 7, −4),
b
1,1
(3, 9, −2), b
2,1
(3, 11, −5), b
3,1
(4, 13, −7).
9.7. Control points as for Exercise 9.6, weights w
0,0
= w
0,1
=1,w
1,0
= w
1,1
=
2,w
2,0
= w
2,1
=3,w
3,0
= w
3,1
=1.
9.9. b
0,0
(0, 0, 0), b
1,0
(0,a,0), b
2,0
(a, 2a, 0), b
0,1
(0, 0, 1), b
1,1
(0,a,1),
b
2,1
(a, 2a, 1). Parabolic cylinder can be obtain by sweeping a line seg-
ment along a quadratic B´ezier curve.
9.10. NURBS sphere has control points: (Listed in the order p
0,0
, p
1,0
, etc)
(1, 0, 0), (1, 0, 1), (−1, 0, 1), (−1, 0, 0), (−1, 0, −1), (1, 0, −1), (1, 0, 0);
(1, 1, 0), (1, 1, 1), (−1, −1, 1), (−1, −1, 0), (−1, −1, −1), (1, 1, −1),
(1, 1, 0);
(−1, 1, 0), (−1, 1, 1), (1, −1, 1), (1, −1, 0), (1, −1, −1), (−1, 1, −1),
(−1, 1, 0);
(−1, 0, 0), (−1, 0, 1), (1, 0, 1), (1, 0, 0), (1, 0, −1), (−1, 0, −1), (−1, 0, 0);
(−1, −1, 0), (−1, −1, 1), (1, 1, 1), (1, 1, 0), (1, 1, −1), (−1, −1, −1),
(−1, −1, 0);
(1, −1, 0), (1, −1, 1), (−1, 1, 1), (−1, 1, 0), (−1, 1, −1), (1, −1, −1),
(1, −1, 0);
(1, 0, 0), (1, 0, 1), (−1, 0, 1), (−1, 0, 0), (−1, 0, −1), (1, 0, −1), (1, 0, 0).
Weights: w
i,0
= {1, 0.5, 0.5, 1, 0.5, 0.5, 1},
w
i,1
= w
i,2
= {0.5, 0.25, 0.25, 0.5, 0.25, 0.25, 0.5},
w
i,3
= {1, 0.5, 0.5, 1, 0.5, 0.5, 1},
w
i,4
= w
i,5
= {0.5, 0.25, 0.25, 0.5, 0.25, 0.25, 0.5},
w
i,6
= {1, 0.5, 0.5, 1, 0.5, 0.5, 1}.
Knots for s and t 0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1.