Contents xiii
5.6.5 Converting from Parametric Form to Implicit Form . . . . . 127
5.7 Conicsin Space ..........................................130
5.8 Applications of Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6. B´ezier Curves I .............................................135
6.1 Introduction .............................................135
6.2 B´ezierCurves ofLowDegree...............................136
6.2.1 Linear B´ezierCurves ...............................136
6.2.2 Quadratic B´ezierCurves ............................136
6.2.3 Cubic B´ezierCurves ...............................137
6.3 The Effect of Adjusting a Control Point . . . . . . . . . . . . . . . . . . . . . 140
6.4 The General B´ezierCurve .................................141
6.5 Properties of the Bernstein Polynomials . . . . . . . . . . . . . . . . . . . . . 144
6.6 ConvexHulls ............................................146
6.7 Properties of B´ezier Curves ................................147
6.8 The de Casteljau Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.9 Subdivision of a B´ezier Curve ..............................154
6.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.10.1 Rendering.........................................157
6.10.2 Intersection of a Planar B´ezier Curve and a Line . . . . . . . 158
6.10.3 Intersection of Two B´ezier Curves ....................159
7. B´ezier Curves II ............................................161
7.1 Spatial B´ezierCurves .....................................161
7.2 Derivatives of B´ezierCurves ...............................162
7.3 Conversions Between Representations . . . . . . . . . . . . . . . . . . . . . . . 166
7.4 Piecewise B´ezierCurves ..................................168
7.5 Rational B´ezierCurves....................................175
7.5.1 Properties of Rational B´ezierCurves..................177
7.5.2 de Casteljau Algorithm for Rational Curves . . . . . . . . . . . . 180
7.5.3 Projections of Rational B´ezierCurves.................181
7.5.4 Derivatives of Rational B´ezier Curves .................185
8. B-splines ...................................................187
8.1 IntegralB-spline Curves...................................187
8.1.1 Properties of the B-spline Curve. . . . . . . . . . . . . . . . . . . . . . 194
8.1.2 B-spline Types.....................................196
8.1.3 Application: Font Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.1.4 Application: Morphing or Soft Object Animation . . . . . . 203
8.1.5 The de Boor Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.1.6 Derivativesof aB-spline ............................207
8.2 Non-uniform Rational B-Splines (NURBS) . . . . . . . . . . . . . . . . . . 212