ν
k
t
{φ
k
}
c = λ ≡ 1 :
D
t
u = D
2
xx
u + γ, x ∈ ]0, 1[, t > 0; u(0, x) = 0; u(t, 0) = u(t, 1) = 0.
Lϕ ≡ −ϕ
00
ϕ(0) = ϕ(1) = 0.
ν
k
= k
2
π
2
, ϕ
k
(x) = sin(kπx), k ∈ N .
c
0
k
= −ν
k
c
k
+ b
k
, c
k
(0) = 0; k ∈ N ,
b
k
=
³
1
Z
0
γ · ϕ
k
´
Á
³
1
Z
0
|ϕ
k
|
2
´
=
"
4γ
kπ
, k
0, k
f t b
k
t
k
c
k
(t) = b
k
·
t
Z
0
exp
¡
−ν
k
· (t − τ)
¢
dτ =
4γ
k
3
π
3
(1 − exp(−k
2
π
2
t))
k, c
k
(t) ≡ 0
bu(t, x) =
N
X
m=1
4γ
(2m − 1)
3
π
3
(1 − exp(−(2m − 1)
2
π
2
t)) · sin((2m − 1)πx).
N → ∞
u(t, x) =
+∞
X
m=1
4γ
(2m − 1)
3
π
3
(1 − exp(−(2m − 1)
2
π
2
t)) · sin((2m − 1)πx).