ν
m
by
m
· kϕ
m
k
2
= hf, ϕ
m
i, m ∈ N .
ν
k
y =
+∞
X
k=1
b
f
k
ν
k
· ϕ
k
, (4.4.2)
b
f
k
=
hf, ϕ
k
i
kϕ
k
k
2
=
³
β
Z
α
f · ϕ
k
´
Á
³
β
Z
α
|ϕ
k
|
2
´
. (4.4.3)
L r
b
f
k
b
f
k
=
³
β
Z
α
f · ϕ
k
´
Á
³
β
Z
α
r · |ϕ
k
|
2
´
.
y
00
+ y = −exp(2x), y(1) = y(2) = 0
−y
00
− y = exp(2x).
α = 1 β = 2 p(x) ≡ 1 q(x) ≡ −1 f(x) = exp(2x)
−ϕ
00
− ϕ = ν · ϕ, ϕ(1) = ϕ(2) = 0.
−ϕ
00
= µ · ϕ, µ = ν + 1.
µ > 0.
ϕ(x) = Acos(γx) + B
sin(γx)
γ
, γ =
√
µ.