ey(x) =
N+1
X
k=0
c
k
· Π
k
(x). (4.5.4)
Π
k
(x
n
) = δ
nk
,
c
k
= ey(x
k
)
φ = Π
n
,
N+1
X
k=0
a
nk
· c
k
= b
n
, n = 0, . . . , N + 1, (4.5.5)
a
nk
=
1
Z
0
¡
p · Π
0
n
· Π
0
k
+ q · Π
n
· Π
k
¢
, n, k = 1, . . . , N; (4.5.6)
a
0k
= a
k0
= p(0)µ
0
· δ
0k
+
1
Z
0
¡
p · Π
0
0
· Π
0
k
+ q · Π
0
· Π
k
¢
; (4.5.7)
a
N+1,k
= a
k,N+1
= p(1)µ
1
·δ
N+1,k
+
1
Z
0
¡
p·Π
0
N+1
·Π
0
k
+q ·Π
N+1
·Π
k
¢
; (4.5.8)
b
n
=
1
Z
0
f · Π
n
, n = 0, . . . , N + 1. (4.5.9)
(N + 2) ×(N + 2) A
N+1
X
k,n=0
a
nk
c
k
c
n
= hLey, eyi. (4.5.10)
q
c 6= θ A
N
{φ
k
}
|n − k| > 1