REFERENCES 1341
69. S. M. Spearing, ‘‘Materials Issues in Microelectromechanical Systems (MEMS),’’ Acta Metr., 48,
179–196 (2000).
70. A. M. Flynn, et al., J. Microelectromech. Syst., 1, 44 (1992).
71. S. N. Wang, et al., Sensor Mater., 10, 375 (1998).
72. D. J. Sadler, L. T. M., and A. C. H., ‘‘A Universal Electromagnetic Microactuator Using Magnetic
Interconnection Concepts,’’ J. Microelectromech. Syst., 9(4), 460–468 (2000).
73. C. L. Shih, et al., ‘‘A Robust Co-sputtering Fabrication Procedure for TiNi Shape Memory Alloys
for MEMS,’’ J. Microelectromechan. Syst. 10(1), 69–79 (2001).
74. B. J. Feder, ‘‘A Big Step Forward in Tiny Technology,’’ New York Times, 2000, p. C1.
75. C. R. Giles, D. J. Bishop, and V. Aksyuk, ‘‘MEMS for Light-wave Networks,’’ MRS Bull., 26(4),
328–329 (2001).
76. T. Laverghetta, T., Microwave Materials Fabrication and Techniques, 2 ed., Norwood, Artech
House, Norwood, MA, 1991.
77. J. S. Goela, et al., ‘‘Chemical-Vapor-Deposited Materials for High Thermal Conductivity Appli-
cations,’’ Mat. Res. Soc. Bull., 26(6), 458 (2001).
78. D. L. Wilcox, R. F. Huang, and R. Kommrusch, ‘‘The Multilayer Ceramic Integrated Circuit
(MCIC) Technology: An Enabler for the Integration of Wireless Radio Functions,’’ Adv. Mi-
croelect., (July / August) (1999).
79. P. K. Gallagher, et al., ‘‘Preparation of Mn-Zn Ferrites Having a Low Temperature Coefficient
of Permeability,’’ J. Am. Cer. Soc., 66(7), C110 (1983).
80. J. L. Vossen, and W. Kern (eds.), Thin Film Process, Academic, New York, 1978.
81. M. Ohring, The Materials Science of Thin Films, Academic, New York, 1992, p. 704.
82. H. Ehrenreinch, Fundamentals of Amorphous Semiconductors, National Academy of Sciences,
Washington, DC, 1972.
83. R. Glang, ‘‘Vacuum Evaporation,’’ in Handbook of Thin Film Technology, L. I. Maissel and R.
Glang (eds.), McGraw-Hill, New York, 1970.
84. R. C. Jaeger, Introduction to Microelectronic Fabrication, Vol. 5, Modular Series on Solid State
Devices, G. W. Neudeck and R. F. Pierret (eds.), Addison-Wesley, New York, 1988.
85. S. M. Sze, Semiconductor Devices: Physics and Technology,Wiley, New York, 1985.
86. G. H. B. Thompson, Physics of Semiconductor Laser Devices, Wiley, New York, 1980.
87. A. Y. Cho, ‘‘Recent Developments in Molecular Beam Epitaxy,’’ J. Vac. Sci. Tech., 16, 275
(1979).
88. M. A. Herman, and H. Sitter, Molecular Beam Epitaxy-Fundamentals and Current Status,
Springer, Berlin, 1989.
89. M. B. Panish, and H. Temkin, Ann. Rev. Mater. Sci., 19, 209 (1989).
90. R. A. Smith, Semiconductors, 2nd ed., Cambridge University Press, Cambridge, 1978.
91. M. Grayson, (ed.), Encyclopedia of Semiconductor Technology. Encyclopedia Reprint Series,
Wiley, New York, 1984.
92. C. G. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials, 1973,
Prentice-Hall, Englewood Cliffs, NJ, 1973.
93. R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, Engelwood, NJ, 1970.
94. J. W. Mayer, and S. S. Lau, Electronic Materials Science: For Integrated Circuits in Si and
GaAs, Macmillan, New York, 1990.
95. G. O. Mallory, and J. B. Hajdu (eds), Electroless Plating, American Electroplaters and Surface
Finishers Society, Orlando, FL, 1990.
96. W. Riedel, Electroless Nickel Plating, ASM International, Metals Park, OH, 1991.
97. R. W. Filas, ‘‘Metallization of Silica Fibers,’’ Mat. Res. Soc. Symp. Proc., 531, 263–272 (1988).
98. R. Comerford, ‘‘Handhelds Duke It Our for the Internet,’’ IEEE Spectrum, August, 35 (2000).
99. V. K. Varadan, K. A. Jose, and V. V. Varadan, ‘‘Design and Development of Electronically
Tunable Microstrip Antennas,’’ Smart Mater. Struct., 8, 238 (1999).
100. S. C. Jordan, ‘‘Packaging Automation Drives WDM Component Assembly,’’ Laser Focus World,
37(2), 45 (2001).