19
-24 Robotics and Automation Handbook
Ha, Q.P., Nguyen, Q.H., Rye, D.C., and Durrant-Whyte, H.F. (2000). Impedance control of a hydraulically
actuated robotic excavator. Automation in Construction, 9:421–435.
Hogan, N. (1985). Impedancecontrol: an approach to manipulation. ASME J. Dynamic Syst. Meas. Control,
107:1–24.
Hogan, N. (1988). On the stability of manipulators performing contact tasks. IEEE J. Robotics and Au-
tomation, 4:677–686.
Hogan, N. (1990). Mechanical impedance of single- and multi-articular systems. In: J. Winters and S. Woo
(eds.), Multiple Muscle Systems: Biomechanics and Movement Organization, Springer-Verlag, New
York, pp. 149–164.
Kazerooni, H., Waibel, B., and Kim, S. (1990). On the stability of compliant motion control: theory and
experiments. ASME J. Dynamic Syst. Meas. Control, 112:417–426.
Kleidon, M. (1983). Modeling and performance of a pneumatic/hydraulic hybrid actuator with tunable
mechanical impedance. S.M. Thesis, Department of Mechanical Engineering, Massachusetts Insti-
tute of Technology, September.
Kosuge, K., Oosumi, T., and Seki, H. (1997). Decentralized control of multiple manipulators handling an
object in coordination based on impedance control of each arm. Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, pp. 17–22.
Lawrence, D.A. (1988). Impedance control stability properties in common implementations. Proc. IEEE
Int. Conf. Robotics and Automation, 2:1185–1190.
Levine, W.S. (1996). The Control Handbook. CRC Press and IEEE Press.
Miller, B.E., Colgate, J.E., and Freeman, R.A. (2000). Guaranteed stability of haptic systems with nonlinear
virtual environments. IEEE Trans. Robotics and Automation, 16(6):712–719.
Newman, W.S. (1992). Stability and performance limits of interaction controllers. ASME J. Dynamic Syst.
Meas. Control, 114(4):563–570.
Newman, W.S. and Zhang, Y. (1994). Stable interaction control and coulomb friction compensation using
natural admittance control. J. Robotic Systems, 11(1):3–11.
Pratt, G.A. and Williamson, M.M. (1995). Series elastic actuators. Intelligent Robots and Systems, Proc.
Human Robot Interaction and Cooperative Robots, pp. 399–406.
Rancourt, D. and Hogan, N. (2001). Stability in force-production tasks. J. Motor Behavior, 33(2):193–204.
Sharon, A., Hogan, N., and Hardt, D.E. (1988). High-bandwidth force regulation and inertia reduction
using a macro/micro manipulator system. Proc. IEEE Int. Conf. Robotics and Automation, 1:126–132.
Singh, S.K. and Popa, D.O. (1995). An analysis of some fundamental problems in adaptive control of force
and impedance behavior: theory and experiments. IEEE Trans. Robotics and Automation, 11(6):912–
921.
Tilley, S.W. and Cannon, R.H., Jr. (1986). End point position and force control of a flexible manipulator
with a quick wrist. Proc. AIAA Guidance, Navigation and Control Conference, pp. 41–49.
Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, O.L., Diels, C., and Aisen, M. (2000). A novel approach to
stroke rehabilitation: robot-aided sensorimotor stimulation, Neurology, 54:1938–1944.
Whitney, D. (1977). Force feedback control of manipulator fine motions. ASME J. Dynamic Syst. Meas.
Control, 99:91–97.
Willems, J.C. (1972). Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal.,
45(5):321–351.
Won J. and Hogan N. (1996). Nodicity and nonlinear interacting dynamic systems. Proc. ASME Int. Mech.
Eng. Conf. Exposition, DSC-58:615–621.
Wyatt, J.L., Chua, L.O., Gannett, J.W., G
¨
oknar, I.C., and Green, D.N. (1981). Energy concepts in the
state-space theory of nonlinear n-ports: part I — passivity. IEEE Trans. on Circuits and Systems,
CAS-28(1):48–61.