17
-22 Robotics and Automation Handbook
[22] Kim, Y.H. and Lewis, F.L., Optimal design of CMAC neural-network controller for robot manipu-
lators, IEEE Trans. on Sys. Man and Cybernetics, Vol. 30, No. 1, pp. 22–31, Feb. 2000.
[23] Koditschek, D., Natural motion of robot arms, Proc. IEEE Conf. on Decision and Control, Las Vegas,
NV, pp. 733–735, 1984.
[24] Kreutz, K., On manipulator control by exact linearization, IEEE Trans. Automat. Contr., Vol. 34,
No.7,pp.763–767, July 1989.
[25] Latombe, J.C., Robot Motion Planning, Kluwer, Boston, MA, 1990.
[26] Luh, J., Walker, M., and Paul, R., Resolved-acceleration control of mechanical manipulators, IEEE
Trans. Automat. Contr., Vol. AC–25, pp. 468–474, 1980.
[27] Middleton, R.H. and Goodwin, G.C., Adaptive computedtorque controlfor rigid link manipulators,
Syst. Contr. Lett., Vol. 10, pp. 9–16, 1988.
[28] Ortega, R. and Spong, M.W., Adaptive control of rigid robots: a tutorial, Proc. IEEE Conf. on Decision
and Control, Austin, TX, pp. 1575–1584, 1988.
[29] Paul, R.C., Modeling, trajectory calculation, and servoing of a computer controlled arm, Stanford
A.I. Lab, A.I. Memo 177, Stanford, CA, Nov. 1972.
[30] Dahleh, M.A. and Pearson, J.B., L
1
-optimal compensators for continuous-time systems, IEEE Trans.
Automat. Contr., Vol. AC-32, No. 10, pp. 889–895, Oct. 1987.
[31] Porter, D.W. and Michel, A.N., Input-output stability of time varying nonlinear multiloop feedback
systems, IEEE Trans. Automat. Contr., Vol. AC-19, No. 4, pp. 422–427, Aug. 1974.
[32] Sadegh, N. and Horowitz, R., An exponentially stable adaptive control law for robotic manipulators,
Proc. American Control Conf., San Diego, pp. 2771–2777, May 1990.
[33] Schwartz, H.M. and Warshaw, G., On the richness condition for robot adaptive control, ASME
Winter Annual Meeting, DSC-Vol. 14, pp. 43–49, Dec. 1989.
[34] Slotine, J.-J.E. and Li, W., On the adaptive control of robot manipulators, Int. J. Robotics Res., Vol. 6,
No.3,pp.49–59, 1987.
[35] Spong, M.W., Modeling and control of elastic joint manipulators, J. Dyn. Sys., Meas. Contr., Vol. 109,
pp. 310–319, 1987.
[36] Spong, M.W., On the robust control of robot manipulators, IEEE Trans. Automat. Contr., Vol. 37,
pp. 1782–1786, Nov. 1992.
[37] Spong, M.W., Lewis, F., and Abdallah, C., Robot Control: Dynamics, Motion Planning, and Analysis,
IEEE Press, 1992.
[38] Spong, M.W., Ortega, R., and Kelly, R., Comments on ‘Adaptive manipulator control’, IEEE Trans.
Automat. Contr., Vol. AC–35, No. 6, pp. 761–762, 1990.
[39] Spong, M.W. and Vidyasagar, M., Robust nonlinear control of robot manipulators, Proc. 24th IEEE
Conf. Decision and Contr., Fort Lauderdale, FL, pp. 1767–1772, Dec. 1985.
[40] Spong, M.W. and Vidyasagar, M., Robust linear compensator design for nonlinear robotic control,
IEEE J. Robotics Automation, Vol. RA-3, No. 4, pp. 345–350, Aug. 1987.
[41] Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control, John Wiley & Sons, New York,
1989.
[42] Su, C.-Y., Leung, T.P., and Zhou, Q.-J., A novel variable structure control scheme for robot trajectory
control, IFAC World Congress, Vol. 9, pp. 121–124, Tallin, Estonia, August 1990.
[43] Vidyasagar, M., Control Systems Synthesis: A Factorization Approach, MIT Press, Cambridge, MA,
1985.
[44] Vidyasagar, M., Optimal rejection of persistent bounded disturbances, IEEE Trans. Automat. Contr.,
Vol. AC–31, No. 6, pp. 527–534, June 1986.
[45] Yaz, E., Comments on On the robust control of robot manipulators by M.W. Spong, IEEE Trans.
Automatic Control, Vol. 38, No. 3, pp. 511–512, Mar. 1993.
[46] Yoo, B.K. and Ham, W.C., Adaptive control of robot manipulator using fuzzy compensator, IEEE
Trans. on Fuzzy Systems, Vol. 8, No. 2, pp. 186–199, Apr. 2000.
[47] Yoshikawa, T., Foundations of Robotics: Analysis and Control, MIT Press, Cambridge, MA, 1990.