Modeling and Identification for Robot Motion Control 14
-25
References
[1] Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, McGraw-Hill, London,
1996.
[2] Vukobratovi
´
c, M. and Potkonjak, V., Dynamics of Manipulation Robots: Theory and Application,
Springer-Verlag, Berlin, 1982.
[3] Fu,K.S., Gonzales, R.C., and Lee, C.S.G., Robotics: Control,Sensing, Vision, and Intelligence, McGraw-
Hill, London, 1987.
[4] Kozlowski, K., Modeling and Identification in Robotics, Springer-Verlag, London, 1998.
[5] Asada, H. and Youcef-Toumi, K., Direct-Drive Robots: Theory and Practice, MIT Press, London, 1987.
[6] Nethery, J. and Spong, M.W., Robotica: A Mathematica package for robot analysis, IEEE Rob. Autom.
Mag., 1, 13, 1994.
[7] Corke, P.I., A robotics toolbox for MATLAB, IEEE Rob. Autom. Mag., 3, 24, 1996.
[8] Bennnett, D.J. and Hollerbach, J.M., Autonomous calibration of single-loop closed kinematic chains
formed by manipulators with passive endpoint constraints, IEEE Trans. Rob. Autom., 7, 597, 1991.
[9] B
´
elanger, P.R., Estimation of angular velocity and acceleration from shaft encoder measurements,
in Proc. IEEE Int. Conf. Rob. Autom., Nice, France, 1992, 585.
[10] B
´
elanger, P.R., Dobrovolny, P., Helmy, A., and Zhang, X., Estimation of angular velocity and accel-
eration from shaft-encoder measurements, Int. J. Rob. Res., 17, 1225, 1998.
[11] Swevers, J., Ganseman, C., Tukel, D.B., de Schutter, J., and van Brussel, H., Optimal robot excitation
and identification, IEEE Trans. Rob. Autom., 13, 730, 1997.
[12] Calafiore, G., Indri, M., and Bona, B., Robot dynamic calibration: Optimal excitation trajectories
and experimental parameter estimation, J. Rob. Syst., 18, 55, 2001.
[13] Potkonjak, V., Tzafestas, S., Kostic, D., Djordjevic, G., and Rasic, M., Illustrating man-machine
motion analogy in robotics — the handwriting problem, IEEE Rob. Autom. Mag., 10, 35, 2003.
[14] Mayeda, H., Yoshida, K., and Osuka, K., Base parameters of manipulator dynamic models, IEEE
Trans. Rob. Autom., 6, 312, 1990.
[15] Armstrong-H
´
elouvry, B., Dupont, P., and Canudas de Wit, C., A survey of models, analysis tools
and compensation methods for the control of machines with friction, Automatica, 30, 1083,
1994.
[16] Olsson, H.,
◦◦
Astr
¨
om, K.J., Canudas de Wit, C., G
¨
afvert, M., and Lischinsky, P., Friction models and
friction compensation, Europ. J. Control, 4, 176, 1998.
[17] Swevers, J., Al-Bender, F., Ganseman, C.G., and Prajogo, T., An integrated friction model structure
with improved presliding behavior for accurate friction compensation, IEEE Trans. Autom. Control,
45, 675, 2000.
[18] Barabanov, N. and Ortega, R., Necessary and sufficient conditions for passivity of the LuGre friction
model, IEEE Trans. Aut. Control, 45, 830, 2000.
[19] Hensen, R.H.A., Angelis, G.Z., Van de Molengraft, M.J.G., De Jager, A.G., and Kok, J.J., Grey-box
modeling of friction: an experimental case study, Europ. J. Contr., 6, 258, 2000.
[20] Hensen, R.H.A., Van de Molengraft, M.J.G., and Steinbuch, M., Frequency domain identification
of dynamic friction model parameters, IEEE Trans. on Contr. Syst. Tech., 10, 191, 2001.
[21] Golub, G.H. and van Loan, C.F., Matrix computations, John Hopkins University Press, London,
1996.
[22] Slotine, J.J.E. and Li, W., Applied Nonlinear Control, Prentice Hall, Upper Saddle River, NJ, 1991.
[23] Nijmeijer, H. and Van der Schaft, A., Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin,
1991.
[24] Pintelon, R. and Schoukens, J., System Identification: A Frequency Domain Approach, IEEE Press,
Piscataway, NJ, 2001.
[25] Sanathanan, C.K. and Koerner, J., Transfer function synthesis as a ratio of two complex polynomials,
IEEE Trans. Autom. Control, 8, 56, 1963.