10. In Exercise 9, what angle will produce a rectangle with
largest possible area? What is this maximum area?
In Exercises 11–26, use the half-angle identities to evaluate the
given expression exactly.
11. cos
p
8
12. tan
p
8
13. sin
3
8
p
14. cos
3
8
p
15. tan
1
p
2
16. sin
5
8
p
17. cos
1
p
2
18. tan
5
8
p
19. sin
7
8
p
20. cos
7
8
p
21. tan
7
8
p
22. cot
p
8
23. cos
1
p
6
[Hint: Exercise 11] 24. sin
1
p
6
25. sin
2
p
4
[Hint: Exercise 17] 26. cos
2
p
4
In Exercises 27–32, find sin
2
x
, cos
2
x
, and tan
2
x
under the
given conditions.
27. cos x .4
0 x
p
2
28. sin x .6
p
2
x p
29. sin x
3
5
3
2
p
x 2p
30. cos x .8
3
2
p
x 2p
31. tan x
1
2
p x
3
2
p
32. cot x 1
p x
p
2
In Exercises 33–38, write each expression as a sum or
difference.
33. sin 4x cos 6x 34. sin 5x sin 7x
35. cos 2x cos 4x 36. sin 3x cos 5x
37. sin 17x sin(3x) 38. cos 13x cos(5x)
In Exercises 39–44, write each expression as a product.
39. sin 3x sin 5x 40. cos 2x cos 6x
41. sin 9x sin 5x 42. cos 5x cos 7x
43. cos 2x cos 5x 44. sin 4x sin 3x
In Exercises 45–50, assume sin x .6 and 0 x p/2 and
evaluate the given expression.
45. sin 2x 46. cos 4x 47. cos 2x 48. sin 4x
49. sin
2
x
50. cos
2
x
51. Express cos 3x in terms of cos x.
SECTION 7.3 Other Identities 543
52. (a) Express the rule of the function f (x) cos
3
x in terms of
constants and first powers of the cosine function as in
Example 4.
(b) Do the same for f(x) cos
4
x.
In Exercises 53–58, simplify the given expression.
53.
2
si
s
n
in
2x
x
54. 1 2 sin
2
2
x
55. 2 cos 2y sin 2y (Think!)
56. cos
2
2
x
sin
2
2
x
57. (sin x cos x)
2
sin 2x
58. 2 sin x cos
3
x 2 sin
3
x cos x
In Exercises 59–61, prove the given sum to product identity.
[Hint: See the proof on page 541.]
59. sin x sin y 2 cos
x
2
y
sin
x
2
y
60. cos x cos y 2 cos
x
2
y
cos
x
2
y
61. cos x cos y 2 sin
x
2
y
sin
x
2
y
62. When you press a key on a touch-tone phone, the key emits
two tones that combine to produce the sound wave
f(t) sin(2pLt) sin(2pHt),
Where t is in seconds, L is the low frequency tone for the
row the key is in, and H is the high frequency tone for the
column the key is in, as shown in the diagram below. For
example, pressing 2 produces the sound wave f (t)
sin [2p (697)t] sin [2p(1336)t].
(a) Write the function that gives the sound wave produced
by pressing the 6 key.
(b) Express the 6 key function in part (a) as the product of
a sine and a cosine function.
In Exercises 63–76, determine graphically whether the equa-
tion could possibly be an identity. If it could, prove that it is.
63. sin 16x 2 sin 8x cos 8x 64. cos 8x cos
2
4x sin
2
4x
65. cos
4
x sin
4
x cos 2x 66. sec 2x
1 2
1
sin
2
x
123
4
5
6
7
8
9
*0
#
697 Hz
1209 1336 1477 Hz
High frequency
Low
frequency
770 Hz
852 Hz
941 Hz