37. Prove the addition identity for sine:
sin(x y) sin x cos y cos x sin y.
[Hint: You may assume Exercise 36. Use the same method
by which the addition identity for cosine was obtained from
the subtraction identity for cosine in the text.]
38. Prove the addition and subtraction identities for the tangent
function (page 526). [Hint:
tan (x y)
c
s
o
in
s
(
(
x
x
y
y
)
)
.
Use the addition identities on the numerator and denomi-
nator; then divide both numerator and denominator by
cos x cos y and simplify.]
In Exercises 39–44, prove the identity.
39.
c
c
o
o
s
s(
x
x
c
os
y
y
)
1 tan x tan y
40.
s
s
i
i
n
n
(
x
x
s
in
y
y
)
cot x cot y
41.
s
s
i
i
n
n
(
x
x
s
in
y
y
)
cot y cot x
42.
c
s
o
in
s(
x
x
s
in
y
y
)
1 cot x cot y
43.
s
s
i
i
n
n(
x
x
c
os
y
y
)
1 cot x tan y
44.
s
s
i
i
n
n(
x
x
c
os
y
y
)
1 cot x tan y
45. If x is in the first and y is in the second quadrant,
sin x 24/25, and sin y 4/5, find the exact value of
sin(x y) and tan(x y) and the quadrant in which x y
lies.
46. If x and y are in the second quadrant, sin x 1/3, and
cos y 3/4, find the exact value of sin(x y),
cos(x y), tan(x y), and find the quadrant in which
x y lies.
47. If x is in the first and y is in the second quadrant,
sin x 4/5, and cos y 12/13, find the exact value of
cos(x y) and tan(x y) and the quadrant in which
x y lies.
48. If x is in the fourth and y is in the first quadrant,
cos x 1/3, and cos y 2/3, find the exact value of
sin(x y) and tan(x y) and the quadrant in which x y
lies.
49. Express sin(u v w) in terms of sines and cosines of
u, v, and w. [Hint: First apply the addition identity with
x u v and y w.]
SECTION 7.2 Addition and Subtraction Identities 531
50. Express cos(x y z) in terms of sines and cosines of
x, y, and z.
51. If x y p/2, show that sin
2
x sin
2
y 1.
52. Prove that cot(x y)
c
c
o
o
t
t
x
x
c
ot
c
y
o
t y
1
.
In Exercises 53–64, prove the identity.
53. sin(x p) sin x
54. cos(x p) cos x
55. cos(p x) cos x
56. tan(p x) tan x
57. sin(x p) sin x
58. cos(x p) cos x
59. tan(x p) tan x
60. sin x cos y
1
2
[sin(x y) sin(x y)]
61. sin x sin y
1
2
[cos(x y) cos(x y)]
62. cos x sin y
1
2
[sin(x y) sin(x y)]
63. cos(x y) cos(x y) cos
2
x cos
2
y sin
2
x sin
2
y
64. sin(x y) sin(x y) sin
2
x cos
2
y cos
2
x sin
2
y
In Exercises 65–74, determine graphically whether the equa-
tion could possibly be an identity (by choosing a numerical
value for y and graphing both sides). If it could, prove that
it is.
65.
c
si
o
n
s(
x
x
c
os
y
y
)
cot x tan y
66.
c
si
o
n
s(
x
x
c
os
y
y
)
cot x tan y
67. sin(x y) sin x sin y
68. cos(x y) cos x cos y
69.
s
s
i
i
n
n
(
(
x
x
y
y
)
)
t
t
a
a
n
n
x
x
t
t
a
a
n
n
y
y
70.
s
s
i
i
n
n
(
(
x
x
y
y
)
)
c
c
o
o
t
t
y
y
c
c
o
o
t
t
x
x
71.
c
c
o
o
s
s
(
(
x
x
y
y
)
)
c
c
o
o
t
t
x
x
t
t
a
a
n
n
y
y
72.
c
c
o
o
s
s
(
(
x
x
y
y
)
)
c
c
o
o
t
t
y
y
t
t
a
a
n
n
x
x
73. tan(x y) tan x tan y
74. cot(x y) cot x cot y