References
1. Hausser, M. (2000). The Hodgkin-Huxley
theory of the action potential. Nature Neu-
roscience 3: 1165.
2. Cole, K. and H. Curtis (1939). Electric
Impedance of the squid giant axon during
activity. Journal of General Physiology 22:
649–670.
3. Hodgkin, A. and A. Huxley (1939). Action
potentials recorded from inside a nerve
fibre. Nature 144: 710–712.
4. Hodgkin, A. and B. Katz (1949). Journal of
Physiology 108: 37–77.
5. Hodgkin, A. and A. Huxley (1952). A
quantitative description of membrane cur-
rent and its application to conduction and
excitation in nerve. Journal of Physiology
117:500–544.
6. Avery, R. (1973). Implantable nerve stimu-
lating electrode. U.S.A., U.S. Patent
#3,774,618.
7. Hagfors, N. (1972). Implantable electrode.
U.S.A., U.S. Patent #3,654,933.
8. Popovic, D., R. Stein, K. Jovanovic, R. Dai,
A. Kostov and W. Armstroing (1993). Sen-
sory nerve recordin for closed-loop control
to restore motor functions. IEEE Transac-
tions on Biomedical Engineering 40(10):
1024–1031.
9. Naples, G., J. Sweeney and J. Mortimer
(1986). Implantable cuff, method of manu-
facture, and method of installation. United
States Patent. USA, No. 4,602,624.
10. Klepinski, R. (1994). Implantable neural
electrode. USA, #5,282,486.
11. Sahin, M. and D. Durand (1998). Improved
nerve cuff electrode recordings with sub-
threshold anodic currents. IEEE Transac-
tions on Biomedical Engineering 45(8):
1044–1050.
12. Takeuchi, S. and I. Shimoyama (1999).
Wireless recording of insect neural activity
with an SMA microelectrode. Proceedings of
The First Joint BMES/EMBS Conference Ser-
ving Humanity, Advancing Technology,
Atlanta, USA, IEEE.
13. Jezernik, S. and T. Sinkjaer (1999). On sta-
tistical properties of whole nerve cuff
recording. IEEE Transactions on Biomedical
Engineering 46(10): 1240–1245.
14. Nakatani, H., T. Watanbe and N. Hoshi-
miya (2001). Detection of nerve action
potentials under low signal-to-noise ratio
condition. IEEE Transactions on Biomedical
Engineering 48(8): 845–849.
15. Jensen, W., S. Lawrence, R. Riso and T.
Sinkjaer (2001). Effect of initial joint posi-
tion on nerve-cuff recordings of muscle
afferents in rabbits. IEEE Transactions on
Neural Systems and Rehabilitation Engi-
neering 9(3): 265–273.
16. Hoffer, J. and K. Kallesoe (2001). How to
use nerve cuffs to stimulate, record or mod-
ulate neural activity. In: Neural Prostheses for
Restoration of Sensory and Motor Function.
J. K. Chapin (ed.), CRC Press, 139–175.
17. Edell, D., J. Churchill and I. Gourley
(1982). Biocompatibility of a silicon based
peripheral nerve electrode. Biomaterials,
Medical Devices, and Artificial. 103–122.
18. Akin, T., K. Najafi, R. Smoke and R. Bradley
(1994). A micromachined silicon sieve elec-
trode for nerve regeneration applications.
IEEE Transactions on Biomedical Engineer-
ing 41(4): 305–315.
19. Kovacs , G. (1990). Technology Development
for a Chronic Neural Interface. Electrical
Engineering, Stanford University.
20. Mannard, A., R. Stein and D. Charles
(1974). Regeneration electrode units:
Implants for recording from single periph-
eral nerve fibers in freely moving animals.
Science 183: 547–549.
21. Kovacs, G., C. Storment, et al. (1994).
Silicon-substrate microelectrode arrays for
parallel recording of neural activity in
peripheral and cranial nerves. IEEE
Transactions on Biomedical Engineering
41(6).
22. Wallman, L., Y. Zhang, T. Laurell and N.
Danielsen (2001). The geometric design of
micromachined silicon sieve electrodes
influences functional nerve regeneraion.
Biomaterials 22: 1187–1193.
23. Stieglitz, T., H. Ruf, M. Gross, M. Schuet-
tler and U. Meyer (2002). A biohybrid sys-
tem to inteface peripheral nerves after
traumatic lesions: design of a high channel
sieve electrode. Biosensors and Bioelectronics,
1–12.
24. Williams, J., R. Rennaker and D. Kipke
(1999). Long-term neural recording char-
acteristics of wire microelectrode arrays
implanted in cerebral cortex. Brain Research
Protocols 4: 303–313.
25. Grundfest, H., R. Sengstaken and W. Oet-
tinger (1950). Stainless steel micro-needle
electrodes made by electrolytic pointinc.
Physical Instruments for the Biologist 21(4):
360–361.
Microengineered Neural Probes for In Vivo Recording 147