329
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
M. Gugat and G. Leugering, Global boundary controllability of the de
St.Venant equations between steady states,
Ann. I.
H.
Poincare‘, Analyse
Non Line‘aire
20,
1
(2003).
J.-M.
Coron, B. d’Andrka-Novel and
G.
Bastin, A Lyapunov approach to
control irrigation canals modeled by Saint-Venant equations, in CD-Rom
Proceedings, Paper
F1008-5,
ECC99, Karlsruhe, Germany,
(1999).
J.
de Halleux,
B.
d’Andr6a-Nove1, J.-M. Coron and
G.
Bastin, A Lyapunov
approach for the control of multi reach channels modelled by Saint-Venant
equations, in CD-Rom Proceedings, NOLCOS’Ol, St-Petersburg, Russia,
June
2001, 1515 (2001).
J.
de Halleux and
G.
Bastin, Stabilization of Saint-Venant equations using
Riemann invariants: Application to waterways with mobile spillways, in CD-
Rom Proceedings, Barcelona, Spain, July
(2002).
J.
de Halleux,
C.
Prieur, J.-M. Coron, B. d’Andrka-Novel and
G.
Bastin
Boundary feedback control in networks of open channels, Preprint,
(2002).
J.-L. Lions, Contr8labilitk Exacte, Perturbations et Stabilisation de Systkmes
Distribugs, Vol.
I,
Masson,
(1988).
D. L. Russell, Controllability and stabilizability theory for linear partial dif-
ferential equations, Recent progress and open questions,
SIAM
Rev.
20,
639
(1978).
E.
Zuazua, Exact controllability for the semilinear wave equation,
J.
Math.
Pures et Appl.
69,
1
(1990).
I. Lasiecka and
R.
Triggiani, Exact controllability of semilinear abstract sys-
tems with applications to waves and plates boundary control problems,
Appl.
Math. Optim.
23,
109 (1991).
M. Cirini, Boundary controllability of nonlinear hyperbolic systems,
SIAM
J.
Control Opt.
7,
198 (1969).
M. Cirini, Nonlinear hyperbolic problems with solutions on preassigned sets,
Michigan Math.
J.
17,
193 (1970).
T.
T.
LI, Exact boundary controllability of unsteady flows in
a
network
of
open canals, to appear in Mathematische Nachrichten.
T. T.
LI and
Y.
JIN, Semi-glabal
C1
solution to the mixed initial-boundary
value problem for quasilinear hyperbolic systems,
Chin. Ann. Math.
22B,
325 (2001).
T.
T.
LI, B.
P.
Rao and
Y.
JIN, Solution
C1
semi-globale et contrdabilit6
exacte frontikre de systkmes hyperboliques quasi linkaires,
C.
R.
Acad. Sci.
Paris,
t.
333
Skrie
I,
219 (2001).
T.
T.
LI and B.
P.
Rao, Exact boundary controllability for quasilinear hy-
perbolic systems,
SIAM
J.
Control Optim.
41,
1748 (2003).
T.
T.
LI and B. P.
Raq
Local exact boundary controllability for
a
class of
quasilinear hyperbolic systems,
Chin. Ann: Math.
23B,
209 (2002).
19.
T. T.
LI, Exact controllability for quasilinear hyperbolic systems and its ap-
plication to unsteady flows in
a
network
of
open canals,
to
appear in Math-
ematical Methods in the Applied Sciences.