144 Analytical Techniques for Atmospheric Measurement
Park, J.H., Rothman, L.S., Rinsland, C.P. et al. (1987) Atlas of Absorption Lines from 0 to 17900 cm
−1
,
NASA Reference Publication 1188.
Paul, J.B., Lapson, L. & Anderson, J.G. (2001) Ultrasensitive absorption spectroscopy with a high
finesse optical cavity and off-axis alignment, Appl. Opt., 40, 4904–4910.
Penner, S.S. (1959) Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley
Publishing Company, Reading, Mass.
Persky, M.J. (1995) A review of spaceborne infrared Fourier transform spectrometers for remote
sensing, Rev. Sci. Instrum., 66 (10), 4763–4796.
Pine, A.S., Fried, A. & Elkins, J.W. (1985) Spectral intensities in the fundamental bands of HF and
HCl, J. Mol. Spectrosc. 109, 30–45.
Pine, A.S. & Fried, A. (1985) Self-broadening in the fundamental bands of HF and HCl, J. Mol.
Spectrosc., 114, 148–162.
Pugh, L.A. & Rao, K.N. (1976) Intensities from infrared spectra, in Molecular Spectroscopy: Modern
Research Volume II, K.N. Rao (ed.), Academic Press, New York.
Reid, J., El-Sherbiny, M., Garside, B.K. & Ballik, E.A. (1980) Sensitivity limits of a tunable diode
laser spectrometer, with application to the detection of NO
2
at the 100-ppt level, Appl. Opt.,19
(19), 3349–3353.
Reid, J. & Labrie, D. (1981) Second-harmonic detection with tunable diode lasers-comparison of
experiment and theory, Appl. Phys. B, 26, 203–210.
Richard, E.C., Kelly K.K., Winkler, R.H. et al. (2002) A fast-response near-infrared tunable diode
laser absorption spectrometer for in situ measurements of CH
4
in the upper troposphere and
lower stratosphere, Appl. Phys. B, 75, 183–194.
Richter, D., Fried, A., Wert, B.P., Walega, J.G. & Tittel, F.K. (2002) Development of a tunable
mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection, Appl.
Phys. B, 75, 281–288.
Rinsland, C.P., Zander, R., Mahieu, E., et al. (1992) Ground-based infrared measurements of
carbonyl sulfide total column abundances: Long-term trends and variability, J. Geophys. Res.,
97 (D5), 5995–6002.
Rinsland, C.P., Goldan, A., Mahieu, E. et al. (2002) Ground-based infrared spectroscopic measure-
ments of carbonyl sulfide: free tropospheric trends from a 24-year time series of solar absorption
measurements, J. Geophys. Res., 107 (D22), 4657, doi:10.1029/2002JD002522.
Rinsland, C.P., Mathieu, E., Zander, R. et al. (2003) Long-term trends of inorganic chlorine from
ground-based infrared solar spectra: past increases and evidence for stabilization, J. Geophys.
Res., 108 (D8), 4252, doi:10.1029/2002JD003001.
Rothman, L.S., Hawkins, R.L., Wattson, R.B. & Gamache, R.R. (1992) Energy levels, intensities,
and linewidths of atmospheric carbon dioxide bands, J. Quant. Spectrosc. Radiat. Transfer, 48,
537–566.
Roths, J., Zenker, T., Parchatka, U. et al. (1996) Four-laser airborne infrared spectrometer for
atmospheric trace gas measurements, Appl. Opt., 35 (36), 7075–7084.
Sachse, G.W., Hill, G.F., Wade, L.O. & Perry, M.G. (1987) Fast-response, high-precision carbon
monoxide sensor using a tunable diode laser absorption technique, J. Geophys. Res., 92 (D2),
2071–2081.
Sandholm, S., Smmyth, S., Bai, R. & Bradshaw, J. (1997) Recent and future improvements in two-
photon laser-induced fluorescence NO measurement capabilities, J. Geophys. Res., 102 (D23),
28 651–28 661.
Sauer, C.G., Pisano, J.T. & Fitz, D.R (2003) Tunable diode laser absorption spectrometer measure-
ments of ambient nitrogen dioxide, nitric acid, formaldehyde, and hydrogen peroxide in Parlier,
California, Atm. Environ., 37, 1583–1591.
Schiff, H.I., Karecki, D.R., Harris, G.W., Hastie, D.R. & Mackay, G.I. (1990) A tunable diode laser
system for aircraft measurements of trace gases, J. Geophys. Res., 95 (D7), 10 147–10 153.