Chapter 5 High-Speed Electron Microscopy 439
35. Togawa, K., Nakanishi, T. and Baba, T. (1998). Surface charge limit in NEA
superlattice photocathodes of polarized electron source. Nucl. Instrum.
Meth. A. 414, 431–445.
36. Saka, T., Kato, T. and Nakanishi, T. (2000). Spinpolarized electron sources
with GaAs-GaAsP superlattices for surface analyses. Surf. Sci. 454,
1042–1045.
37. Luh, D.-A., Brachmann, A., Clendenin, J.E., Desikan, T., Garwin, E.L., Harvey,
S., Kirby, R.E., Maruyama, T., Prescott, C.Y. and Prepost, R. (2003). Recent
polarized photocathode R&D at SLAC. AIP Conf. Proc. 675, 1029–1033.
38. Muggli, P., Brogle, R., Jou, S., Doerr, H.J., Bunshah, R.F. and Joshi, C. (1996).
Photoemission from diamond and fullerene fi lms for advanced accelera-
tor applications. IEEE T. Plasma. Sci. 24, 428–438.
39. Modukuru, Y., Thachery, J., Tang, H., Malhotra, A., Cahay, M. and
Boolchand, P. (2001). Growth and characterization of rare-earth monosul-
fi des for cold cathode applications. J. Vac. Sci. Technol. B. 19, 1958–1961.
40. Yada, K. (1986). Researches of cathode materials for thermionic emission.
In: Imura T, Maruse S, Suzuki T, eds. Proc 11th Int Congr Electron Micros-
copy, Vol. 1, pp. 227–228.
41. Watari, F. and Yada, K. (1986). Photoemission from LaB
6
cathode using an
excimer laser. In: Imura T, Maruse S, Suzuki T, eds. Proc 11th Int Congr
Electron Microscopy, Vol. 1, pp. 261–262.
42. May, P.G., Petkie, R.R., Harper, J.M.E. and Yee, D.S. (1990). Photoemission
from thin-fi lm lanthanum hexaboride. Appl. Phys. Lett. 57, 1584–1585.
43. Travier, C. (1994). An introduction to photo-injector design. Nucl. Instrum.
Meth. A. 340, 26–39.
44. Girardeau-Montaut, J.P., Girardeau-Montaut, C., Afi f, M., Perez, A. and
Moustaizis, S.D. (1995). Enhancement of photoelectric-emission sensitiv-
ity of tungsten by potassium-ion implantation. Appl. Phys. Lett. 66,
1886–1888.
45. Orloff, J. (1986). Development of the ZrO/W thermal fi eld cathode. In:
Imura T, Maruse S, Suzuki T, eds. Proc 11th Int Congr Electron Micros-
copy, Vol. 1, pp. 211–214.
46. Nassisi, V. and Perrone, M.R. (1999). Generation and characterization of
high intensity electron beams generated from rough photocathodes. Rev.
Sci. Instrum. 70, 4221–4224.
47. Boussoukaya, M., Bergeret, H., Chehab, R., Leblond, B. and Leduff, J.
(1989). High quantum yield from photofi eld emitters. Nucl. Instrum. Meth.
A. 279, 405–409.
48. Kawamura, Y., Jeong, Y.U., Akiyama, Y., Kubodera, S., Midorikawa, K. and
Toyoda, K. (1993). Generation of high-current photoelectrons using a sub-
picosecond ultraviolet-laser. Jpn. J. Appl. Phys. Part 2-Lett 32, L297–L299.
49. Korte, F., Serbin, J. and Koch, J. (2003). Towards nanostructuring with fem-
tosecond laser pulses. Appl. Phys. A.—Materials Sci. Process 77, 229–235.
50. Bergeret, H., Boussoukaya, M., Chehab, R., Leblond, B. and Leduff, J.
(1991). Short pulse photoemission from a dispenser cathode. Nucl. Instrum.
Meth. A. 301, 389–394.
51. Höbel, F., Dömer, H., Gartenschläger, C., Gernert, U., Nink, T. and
Bostanjoglo, O. (2003). A rugged cathode for photoelectron and DC
thermionic operation. In: Gemming T, Lehmann M, Lichte H, Wetzig K,
eds. Proc Micros Conf Microsc Microanal. Volume 9 Suppl. 3, 150–151.
52. Domer, H. and Bostanjoglo, O. (2003). High-speed transmission electron
microscope. Rev. Sci. Instrum. 74, 4369–4372.
53. Bostanjoglo, O. and Nink, T. (1996). Hydrodynamic instabilities in laser
pulse-produced melts of metal fi lms. J. Appl. Phys. 79, 8725–8729.