
102
5.3. ɋɛɬɲɠɭ ɪɠɫɣɩɟɣɲɠɬɥɩɤ ɬɦɛɞɛɠɧɩɤ ɭɩɥɛ ɥɩɫɩɭɥɩɞɩ ɢɛɧɶɥɛɨɣɺ
ɝ ɪɫɩɣɢɝɩɦɷɨɶɤ ɧɩɧɠɨɭ ɝɫɠɧɠɨɣ
ɇɚ ɧɚɱɚɥɶɧɨɣ ɫɬɚɞɢɢ ɩɟɪɟɯɨɞɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɪɨɢɫɯɨɞɢɬ ɡɚɬɭɯɚɧɢɟ
ɩɟɪɢɨɞɢɱɟɫɤɢɯ ɫɥɚɝɚɟɦɵɯ ɬɨɤɚ ɄɁ, ɫɨɡɞɚɧɧɵɯ ɝɟɧɟɪɚɬɨɪɚɦɢ, ɫɢɧɯɪɨɧɧɵɦɢ
ɤɨɦɩɟɧɫɚɬɨɪɚɦɢ ɢ ɞɜɢɝɚɬɟɥɹɦɢ. ɋɤɨɪɨɫɬɶ ɷɬɨɝɨ ɡɚɬɭɯɚɧɢɹ ɫɭɳɟɫɬɜɟɧɧɨ ɡɚ-
ɜɢɫɢɬ ɨɬ ɬɢɩɚ ɢɫɬɨɱɧɢɤɚ ɢ ɟɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɭɞɚɥɟɧɧɨɫɬɢ ɞɨ ɦɟɫɬɚ ɄɁ. ɑɟɦ
ɛɥɢɠɟ ɢɫɬɨɱɧɢɤ, ɬɟɦ ɛɨɥɶɲɟ ɫɤɨɪɨɫɬɶ ɡɚɬɭɯɚɧɢɹ.
ȼ ɩɪɚɤɬɢɱɟɫɤɢɯ ɪɚɫɱɟɬɚɯ
ɭɱɟɬ ɮɚɤɬɨɪɚ ɜɪɟɦɟɧɢ ɢ ɭɞɚɥɟɧɧɨɫɬɢ ɢɫɬɨɱɧɢɤɚ ɧɚ ɩɟɪɢɨɞɢɱɟɫɤɭɸ ɫɥɚɝɚɟ-
ɦɭɸ ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɩɨ ɪɚɫɱɟɬɧɵɦ ɤɪɢɜɵɦ. Ɉɧɢ ɩɨɫɬɪɨɟɧɵ ɞɥɹ ɪɚɡɥɢɱɧɵɯ
ɬɢɩɨɜ ɝɟɧɟɪɚɬɨɪɨɜ, ɫɢɧɯɪɨɧɧɵɯ ɢ ɚɫɢɧɯɪɨɧɧɵɯ ɞɜɢɝɚɬɟɥɟɣ.
Ɋɚɫɱɟɬɧɵɟ ɤɪɢɜɵɟ ɞɥɹ ɝɟɧɟɪɚɬɨɪɨɜ ɩɪɟɞɫɬɚɜɥɹɸɬ ɝɪɚɮɢɱɟɫɤɨɟ
ɢɡɨɛɪɚɠɟɧɢɟ ɫɟɦɟɣɫɬɜɚ ɡɚɜɢɫɢɦɨɫɬɟɣ:
ɝ
ɝ
ɝ 0
t
t
I
t
I
J
cc
, (5.16)
ɝɞɟ
ɝ 0
cc
ɢ
ɝ t
I – ɩɟɪɢɨɞɢɱɟɫɤɢɟ ɫɥɚɝɚɟɦɵɟ ɬɨɤɚ ɄɁ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
ɞɥɹ ɦɨɦɟɧɬɚ
0t ɢ ɩɪɨɢɡɜɨɥɶɧɨɝɨ ɜɪɟɦɟɧɢ
t
.
Ɋɚɫɱɟɬɧɵɟ ɤɪɢɜɵɟ ɩɨɫɬɪɨɟɧɵ ɞɥɹ ɪɚɡɥɢɱɧɵɯ ɭɞɚɥɟɧɧɨɫɬɟɣ ɤɨɪɨɬ-
ɤɨɝɨ ɡɚɦɵɤɚɧɢɹ (ɫɦ. ɧɚ ɪɢɫ. 5.2 ɤɪɢɜɵɟ, ɨɛɨɡɧɚɱɟɧɧɵɟ ɰɢɮɪɚɦɢ ɨɬ 1 ɞɨ
8). ɉɨɥɨɠɟɧɢɟ ɪɚɫɱɟɬɧɵɯ ɤɪɢɜɵɯ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɚɪɚɦɟɬɪɨɦ
ɝ 0
ɝ 0*ɧɨɦ
ɝ
ɧɨɦ
var
I
I
I
cc
, (5.17)
ɝɞɟ
ɝ
ɧɨɦ
I
– ɧɨɦɢɧɚɥɶɧɵɣ ɬɨɤ ɝɟɧɟɪɚɬɨɪɚ.
ɉɪɢ ɛɥɢɡɤɢɯ ɄɁ ɬɨɤ ɝɟɧɟɪɚɬɨɪɚ ɫɭɳɟɫɬɜɟɧɧɨ ɜɨɡɪɚɫɬɚɟɬ ɩɨ ɨɬɧɨ-
ɲɟɧɢɸ ɤ ɧɨɦɢɧɚɥɶɧɨɦɭ, ɬɚɤ ɱɬɨ ɩɚɪɚɦɟɬɪ
ɝ 0*ɧɨɦ
I
ɜɟɥɢɤ. ȿɝɨ ɦɚɤɫɢ-
ɦɚɥɶɧɨɦɭ ɡɧɚɱɟɧɢɸ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɤɨɪɨɬɤɨɟ ɡɚɦɵɤɚɧɢɟ ɧɚ ɲɢɧɚɯ ɝɟɧɟɪɚ-
ɬɨɪɚ. Ⱦɥɹ ɫɪɟɞɧɢɯ ɡɧɚɱɟɧɢɣ ɫɜɟɪɯɩɟɪɟɯɨɞɧɨɣ ɗȾɋ (
E
cc
= 1,08) ɢ ɪɟɚɤɬɢɜ-
ɧɨɫɬɢ ɝɟɧɟɪɚɬɨɪɚ (
cc
= 0,135) ɢɦɟɟɦ
ɝ 0*ɧɨɦ
I
=E
cc
/
cc
=
1,08/0,135 = 8, ɱɬɨ
ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɪɚɫɱɟɬɧɨɣ ɤɪɢɜɨɣ ɩɨɞ ɧɨɦɟɪɨɦ 8 ɧɚ ɪɢɫ. 5.2.
ɉɨ ɦɟɪɟ ɭɞɚɥɟɧɢɹ ɬɨɱɤɢ ɄɁ ɤɪɚɬɧɨɫɬɶ
Ƚ 0*ɧɨɦ
I
ɫɧɢɠɚɟɬɫɹ ɢ ɜ
ɩɪɟɞɟɥɟ ɫɬɪɟɦɢɬɫɹ ɤ 1. ɗɬɨ ɧɚɫɬɨɥɶɤɨ ɭɞɚɥɟɧɧɨɟ ɄɁ, ɱɬɨ ɧɚɩɪɹɠɟɧɢɟ ɧɚ
ɲɢɧɚɯ ɝɟɧɟɪɚɬɨɪɚ ɨɫɬɚɟɬɫɹ ɧɟɢɡɦɟɧɧɵɦ; ɬɨɤ ɤɨɪɨɬɤɨɝɨ ɡɚɦɵɤɚɧɢɹ ɪɚ-
ɜɟɧ ɟɝɨ ɧɨɦɢɧɚɥɶɧɨɦɭ ɬɨɤɭ.
Ɍɢɩɨɜɵɟ ɤɪɢɜɵɟ ɩɪɟɞɨɩɪɟɞɟɥɹɸɬ ɩɪɨɫɬɨɣ ɚɥɝɨɪɢɬɦ ɢɯ ɩɪɢɦɟɧɟɧɢɹ.
ɉɨ ɭɫɥɨɜɧɨɣ ɷɥɟɤɬɪɢɱɟɫɤɨɣ ɭɞɚɥɟɧɧɨɫɬɢ ɬɨɱɤɢ ɄɁ, ɯɚɪɚɤɬɟɪɢɡɭɟɦɨɣ
ɩɚɪɚɦɟɬɪɨɦ
ɝ 0*ɧɨɦ
I
, ɜɵɛɢɪɚɸɬ ɫɨɨɬɜɟɬɫɬɜɭɸɳɭɸ ɪɚɫɱɟɬɧɭɸ ɤɪɢɜɭɸ.