include drug delivery systems, wires, capacitors, transistors, and diodes for information technology,
systems for energy transport, conversion and storage, such as batteries and fuel cells, and structural
composites for aerospace structures. In order to capitalize on these new opportunities new process-
ing technology is needed, precise characterization tools for single nanofibers are required, and
nanoscale manipulation machines must be developed. These technologies must be supported by well-
verified engineering design tools and analytical methods. It is expected that nanofiber technology
will provide a critical link between nanoscale effect and macroscopic phenomena and become the
enabling pathway for the conversion of nanomaterials into practical large-scale applications.
REFERENCES
1. Reneker, D.H. and Chun, I., Nanotechnology, 7, 216, 1966.
2. Formhals, A., US Patent 1,975,504, October 2, 1934.
3. Donaldson Co., US Patent 6,716,274; 6,673,136.
4. Ko, F.K., Laurencin, C.T., Borden, M.D., and Reneker, D., Proceedings, Annual Meeting, Biomaterials
Research Society, San Diego, April 1998.
5. Rutledge, G., Fridrikh, S. et al., Texcomp 6, Philadelphia, PA, September 2002.
6. Ko, F.K., Nanofiber technology: bridging the gap between nano and macro world, in NATO ASI on
Nanoengineeered Nanofibrous Materials, Guceri, S., Gogotsi, Y. and Kuznetsov, V., NATO Series II,
Vol. 169, 2004.
7. Reneker, D.H. and Fong, H., Eds., Polymer nanofibers, Polymer Preprints, 44, September 2003,
American Chemical Society.
8. Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., and Ko, F.K., Electrospun nanofibrous structure:
a novel scaffold for bioengineering, J. Biomed. Mater. Res., 58, 613–621, 2002.
9. Boland, E.D., Simpson, D.G., Wnek, G. E., and Bowlin, G.L., Electrospinning of biopolymers for tis-
sue engineering scaffolds, Polymer Pre-preprints, 44, 92, 2003.
10. Kwoun, J., Lec, R.M., Han, B., and F. Ko. K., A novel polymer nanofiber interface for chemical sen-
sor applications, Proceedings of the IEEE International Frequency Control Symposium, May 7–9,
2000, Kansas City, MS, pp. 52–57.
11. MacDiarmid, A.G., Jones, W.E., Jr., Norris, I.D., Gao, J., Johnson, A.T., Jr., Pinto, N.J., Hone, J., Han,
B., Ko, F.K., Okusaki, H., and Llanguno, M., Electrostatically-generated nanofibers of electronic poly-
mers, Synth. Met., 119, 27–30, 2001.
12. Lifshutz, N. and Binzer, J.C., Nanofiber coated filter materials for automotive and other applications,
Proceedings of First International Congress on Nanofiber Science and Technology, June 28, 2004, The
Society of Fiber Science and Technology, Tokyo, Japan, pp. 54–62.
13. Ko, F. K., Yang, H., Argawal, R., and Katz, H., Electrospinning of improved CB protective fibrous
materials, Proceedings, March 30–31, 2004, Techtextil, Atlanta.
14. Vacanti, C.A. and Mikos, A.G., Letter from the editors, Tiss. Eng., 1, 1, 1995.
15. Gibson, P.W., Schreuder-Gibson, H.L., and Rivin, D., Electrospun fiber mats:transport properties,
AIChE J., 45, 190–195, 1999.
16. Ijimi, S., Helical microtubules of graphitic carbon, Nature, 354, 53–58, 1991.
17. Treacy, M.M., Ebbesen, T.W., and Gibson, J.M., Nature, 381,67–80, 1996.
18. Wang, E.W., Sheehan, P.E., and Lieber, C.M., Nanobeam mechanics: elasticity, strength and tough-
ness of nanorods and nanotubes, Science, 277, 1971–1975, 1997.
19. Lu, J.P., Elastic properties of single and multilayered nanotubes. Phys. Rev. Lett., 179, 1297, 1997.
20. Peebles, L.H., Carbon Fibers: Formation, Structure, and Properties. CRC Press, Boca Raton, FL, 1995.
21. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G., Li, C., and Willis, P., Electrospinning of con-
tinuous carbon nanotube-filled nanofiber yarns, Adv. Mater., 15, 1161–1165, 2003.
22. Ko, F.K., Lam, H., Titchenal, N., Ye. H., and Gogotsi, Y., Co-electrospinning of carbon nanotube rein-
forced nanocomposite fibrils, in Science and Technology of Electrospinning, Reneker, D. and Fong,
H., Eds., Wiley, New York, chapter X, in press.
244 Nanotubes and Nanofibers