105. Gemming, S. and Seifert, G., Nanotube bundles from calcium disilicide: a density functional theory
study, Phys. Rev. B, 68, 75416, 2003.
106. Ivanovskya, V.V. et al., Electronic properties of single-walled V
2
O
5
nanotubes, Solid State Commun.,
126, 489, 2003.
107. Enyashin, A.N., Makurin, Yu.N. and Ivanovskii, A.L., Electronic band structure of
β
-ZrNCl-based
nanotubes, Chem. Phys. Lett., 387, 85, 2004.
108. Boustani, I. and Quandt, A., Nanotubules of bare boron clusters: Ab initio and density functional study
Europhys. Lett., 39, 527, 1997.
109. Boustani, I. et al., New boron based nanostructured materials, J. Chem. Phys., 110, 3176, 1999.
110. Gindulyte, A., Lipscomb, W.N., and Massa, L., Proposed boron nanotubes, Inorg. Chem., 37, 6544,
1998.
111. Quandt, A., Liu, A.Y., and Boustani, I., Density-functional calculations for prototype metal-boron nan-
otubes, Phys. Rev. B, 64, 125422, 2001.
112. Su, C., Liu, H.T. and Li, J.M., Bismuth nanotubes: potential semiconducting nanomaterials,
Nanotechnology, 13, 746, 2002.
113. Ivanovskii, A.L., Band structure and properties of superconducting MgB
2
and related compounds
(a Review), Phys. Solid State, 45, 1829, 2003.
114. Chernozatonskii, L.A., Diboridebifullerenes and binano tubes, JETP Lett., 74, 335, 2001.
115. Guerini, S. and Piquini, P., Theoretical investigation of TiB
2
nanotubes, Microelectron. J., 34, 495,
2003.
116. Ivanovskaya, V.V. et al., Electronic properties of single-walled V
2
O
5
nanotubes, Solid State Commun.,
126, 489, 2003.
117. Seifert, G. and Hernandez, E., Theoretical prediction of phosphorus nanotubes, Chem. Phys. Lett.,
318, 355, 2000.
118. Seifert, G., Heine, T. and Fowler, P.W., Inorganic nanotubes and fullerenes. Structure and properties of
hypothetical phosphorus fullerenes, Eur. Phys. J. D, 16, 341, 2001.
119. Cabria, I. and Mintmire, J.W., Stability and electronic structure of phosphorus nanotubes, Euro Phys.
Lett., 65, 82, 2004.
120. Lee, S.M. et al., Stability and electronic structure of GaN nanotubes from density-functional calcula-
tions, Phys. Rev. B, 60, 7788, 1999.
121. Zhao, M., et al., Stability and electronic structure of AlN nanotubes, Phys. Rev., B, 68, 235415, 2003.
122. Chang, Ch. et al., Computational evidence for stable fullerene-like structures of ceramic and semi-
conductor materials, Chem. Phys. Lett., 350, 399, 2001.
123. Zhang, D. and Zhang, R.Q., Theoretical predictions on inorganic nanotubes, Chem. Phys. Lett., 371,
426, 2003.
124. Erkoc, S., Semi-empirical SCF-MO calculations for the structural and electronic properties of single-
wall InP nanotubes, J. Mol. Struct. (Thermochem.), 676, 109, 2004.
125. Srolovitz, D.J. et al., Relaxed curvature elasticity and morphology of nested fullerenes, Phys. Rev.
Lett., 74, 1779, 1995.
126. Tenne, R., Doped and heteroatom fullerene-like structures and nanotubes, Adv. Mater., 7, 965, 1995.
127. Parilla, P.A., et al., Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide
using pulsed laser vaporization, J. Phys. Chem., B, 108, 6197, 2004.
128. Rapoport, L. et al., Hollow nanoparticles of WS
2
as potential solid-state lubricants, Nature, 387, 791,
1997.
129. Rapoport, L., Fleishcer, N., and Tenne, R., Fullerene-like WS
2
nanoparticles: superior lubricants for
harsh conditions, Adv. Mater., 15, 651, 2003.
130. Chen, W.X. et al., Wear and friction of NiP electroless composite coating including inorganic
fullerene-like WS
2
nanoparticles, Adv. Eng. Mater., 4, 686, 2002.
131. Rapoport, L. et al., Polymer nanocomposites with fullerene-like solid lubricant, Adv. Eng. Mater., 6,
44, 2004.
132. Rapoport, L. et al., Slow release of fullerene-like WS
2
nanoparticles from Fe–Ni–graphite matrix:
a self-lubricating nanocomposite, Nanoletters, 1, 137, 2001.
133. Zhu, Y.Q. et al., WS
2
nanotubes: shockwave resistance, J. Am. Chem. Soc., 125, 1329, 2003.
134. Zhang, W. et al., Use of functionalized WS
2
nanotubes to produce new polystyrene/polymethyl-
methacrylate nanocomposites, Polymer., 44, 2109, 2003.
154 Nanotubes and Nanofibers