400 T. Mineta and Y. Haga
43. S. Ballandras, M. Calin, S. Zissi, A. Bertsch, J.C. Andre, D. Hauden: Microstereophotoli-
thography and shape memory alloy for the fabrication of miniaturized actuators, Sens.
Actuators A, 62, 741–747 (1997)
44. G. Lim, K. Park, M. Sugihara, K. Minami, M. Esashi: Future of active catheters, Sens.
Actuators, A 56, 113–121 (1996)
45. N.A. Smith, G.G. Antoun, A.B. Ellis, W.C. Crone: Improved adhesion between
nickel.titanium shape memory alloy and a polymer matrix via silane coupling agents,
Composites A, 35, 1307–1312 (2004)
46. A. Hirose, M. Uchihara, T. Aeraki, K. Honda, M. Kondoh: Laser welding of Ti-Ni type shape
memory alloy, J. Jpn. Instrum. Metals 54(3), 262–269 (in Japanese, 1990)
47. D. Stoeckel, A. Pelton, T. Duerig: Self-expanding nitinol stents: Material and design
considerations, Eur. Radiol. 14(2), 292–301 (2004)
48. D. Homma, S. Uemura, F. Nakazawa: Functional Anisotropic Shape Memory Alloy Fiber and
Differential Servo Actuator, Proceedings of the International C onference on Shape Memory
and Superelastic Technologies, Tsukuba, pp. 463–472 (2007)
49. D. Stockel: Status and Trends in Shape Memory Technology, Proceedings of Actuators’92,
pp.79–84 (Bremen, Germany, 1992)
50. T.W. Duering, K.N. Melton, D. Stockel, C.M. Wayman: Engineering Aspects of Shape
Memory Alloys (Butterworth-Heinemann, London, 1990)
51. S. Miyazaki, K. Otsuka: Deformation and transition behavior associated with the r-phase in
Ti-Ni alloys, Metal Trans. A 17A, 53–63 (1986)
52. S. Miyazaki, T. Hashinaga, A. Ishida: Thin Solid Films 364, 281–282 (1996)
53. T.H. Nam, T. Saburi, K. Shimizu: Cu-Content Dependence of Shape Memory Characteristics
in Ti-Ni-Cu Alloys, Mater. Trans. JIM, 31, pp. 959–967 (1990)
54. H.C. Lin, K.M. Lin, S.K. Chang, C.S. Lin: A study of TiNiV ternary shape memory alloys, J.
Alloys Compounds 284(1–2), 213–217 (1999)
55. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada: Effect of heat treatment and
sn content on superelasticity in biocompatible TiNbSb alloys, Mater. Trans. 43, 2978–2983
(2002)
56. K. Ikuta, M. Tsukamoto, S. Hirose: Shape Memory Alloy Servo Actuator System with
Electric Resistance Feedback and Application for Active Endoscope, Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 427–430 (Leuven, Belgium, 1998)
57. A. Menciassi, J.H. Park, S. Lee, S. Gorini, P. Dario, J.O. Park: Robotic Solutions
and Mechanisms for a Semi-autonomous Endoscope, Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and System, Vol. 2, pp. 1379–1384 (Lausanne,
Switzerland, 2002)
58. W. Makishi, T. Matsunaga, M. Esashi, Y. Haga: Active bending electric endoscope using shape
memory alloy coil actuators, Trans. IEE Jpn. 127-E(2), 75–81 (in Japanese, 2000)
59. W.C. McCoy: U.S. Patent 4 543 090 (1985)
60. S. Kaneko, S. Aramaki, K. Arai, Y. Takahashi, H. Adachi, K. Yanagisawa: Multi-Freedom
Tube Type Manipulator with SMA Plate, Proceedings of the International Symposium on
Microsystems, Intelligent Materials and Robots, Sendai, Japan, pp. 87–90 (1995)
61. P.W. Bremer: U.S. Patent 4 753 223 (1988)
62. T. Fukuda, S. Guo, K. Kosuge, F. Arai, M. Negoro, K. Nakabayashi: Micro Active Catheter
System with Multi Degrees of Freedom, Proceedings of 1994 IEEE International Conference
on Robotics and Automation, San Diego, pp. 2290–2295 (1994)
63. H. Takizawa, H. Tosaka, R. Ohta, S. Kaneko, Y. Ueda: Development of a Microfine Active
Bending Catheter Equipped with MIF Tactile Sensors, Twelfth IEEE International Conference
on Micro Electro Mechanical Systems (MEMS’99), Orlando, pp. 412–417 (1999)
64. K. Park, K. Minami, M. Esashi: An i ntegrated communication and control system for a multi-
link active catheter, J. Micromech. Microeng. 6, 345–351 (1996)
65. Y. Haga, Y. Tanahashi, M. Esashi: Small Diameter Active Catheter Using Shape Memory
Alloy, MEMS 98 Proceedings of the IEEE International Workshop on Micro Electro
Mechanical Systems, pp. 419–424 (Heidelberg, Germany, 1998)