578 15 Switch Modeling
15.22 Assume that the linked list for each output of a shared buffer switch can ac-
cept a maximum of m packets only per time step (1 ≤ m ≤ N). Write down
an expression for the transition matrix and derive the performance equations.
Other Switch Structures
15.23 Develop a Markov chain analysis of the multiple input queuing switch.
15.24 Develop a Markov chain analysis of the multiple output queuing switch.
15.25 Develop a Markov chain analysis of the multiple input and output queuing
switch.
References
1. H.J. Siegel, R.J. McMillen and P.T. Mueller, “A survey of Interconnection methods for recon-
figurable parallel processing systems”, Proc. AFIPS 1979, vol. 48, pp. 529–542, 1979.
2. F.A. Tobagi, “Fast packet switch architectures for broadband integrated services digital net-
works”, Proc. IEEE, vol. 78, pp. 133–166, 1990.
3. S.E. Butner and R. Chivukula, “On the limits of electronic ATM switching”, IEEE Networks,
vol. 10, no. 6, pp. 26–31, Nov./Dec. 1996.
4. A. Sabaa, F. Elguibaly and D. Shpak, “Design and modeling of a nonblocking input-buffer
AT M s wi tc h” , Canadian Journal of Electrical and Computer Engineering, vol. 22, pp. 87–93,
1997.
5. D. Present, C. Fayet, and G. Pujolle, “An optimal solution for ATM switches”, Computer
Networks and ISDN Systems, vol. 29, pp. 2039–2052, 1998.
6. R.Y. Awdeh and H.T. Muftah, “Survey of ATM switch architectures”, Computer Networks and
ISDN Systems, vol. 27, pp. 1567–1613, 1995.
7. J. Garcia-Haro and A. Jajszczyk, “ATM shared-memory switching architectures”, IEEE Net-
works, vol. 8, no. 4, pp. 18–26, Jul./Aug. 1994.
8. M. Murata, “Requirements on ATM switch architectures for quality-of-service guarantees”,
IEICE Transactions on Communications., vol. E81-B, pp. 138–151, 1998.
9. A. Patavinal, “Nonblocking architecture for ATM switching”, IEEE Communications Maga-
zine, pp. 38–48, Feb. 1993.
10. B. Patel, F. Schaffa, and M. Willebeek-LeMair, “The helix switch: A single chip cell switch
design”, Computer Networks and ISDN Systems, vol. 28, pp. 1791–1807, 1996.
11. “Design and evaluation of scalable shared-memory ATM switches”, IEICE Transactions on
Communications., vol. E81-B, pp. 224–236, 1998.
12. N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara, “Shared buffer memory switch
for an ATM exchange”, IEEE Trans. Commun., vol. 41, pp. 237–245, 1993.
13. J.-F. Lin and S.-D. Wang, “A high performance fault-tolerant switching network for ATM”,
IEICE Transactions on Communications., vol. E781-B, pp. 1518–1528, 1995.
14. S.-C. Yang and J.A. Silvester, “A reconfigurable ATM switch fabric for fault tolerance and
traffic balancing”, IEEE Journal on Selected Areas in Communications, vol. 9, pp. 1205–1217,
1991.