
2.11 Problems 109
2.26 A three-phase Y-A transformer is rated 225-kV:24-kV, 400 MVA and has a
series reactance of 11.7 f2 as referred to its high-voltage terminals. The
transformer is supplying a load of 325 MVA, with 0.93 power factor lagging
at a voltage of 24 kV (line-to-line) on its low-voltage side. It is supplied from
a feeder whose impedance is 0.11 + j 2.2 f2 connected to its high-voltage
terminals. For these conditions, calculate (a) the line-to-line voltage at the
high-voltage terminals of the transformer and (b) the line-to-line voltage at the
sending end of the feeder.
2.27 Assume the total load in the system of Problem 2.26 to remain constant at
325 MVA. Write a MATLAB script to plot the line-to-line voltage which must
be applied to the sending end of the feeder to maintain the load voltage at
24 kV line-to-line for load power factors in range from 0.75 lagging to unity
to 0.75 leading. Plot the sending-end voltage as a function of power factor
angle.
2.28 A A-Y-connected bank of three identical 100-kVA, 2400-V: 120-V, 60-Hz
transformers is supplied with power through a feeder whose impedance is
0.065 + j0.87 f2 per phase. The voltage at the sending end of the feeder is held
constant at 2400 V line-to-line. The results of a single-phase short-circuit test
on one of the transformers with its low-voltage terminals short-circuited are
VII=53.4V f=60Hz III=41.7A P=832W
a. Determine the line-to-line voltage on the low-voltage side of the
transformer when the bank delivers rated current to a balanced
three-phase unity power factor load.
b. Compute the currents in the transformer's high- and low-voltage windings
and in the feeder wires if a solid three-phase short circuit occurs at the
secondary line terminals.
2.29 A 7970-V: 120-V, 60-Hz potential transformer has the following parameters as
seen from the high-voltage (primary) winding:
X1 = 1721 ~2 X~ = 1897 ~ Xm = 782 kf2
R1 -- 1378 f2 R~ = 1602 S2
a. Assuming that the secondary is open-circuited and that the primary is
connected to a 7.97-kV source, calculate the magnitude and phase angle
(with respect to the high-voltage source) of the voltage at the secondary
terminals.
b. Calculate the magnitude and phase angle of the secondary voltage if a
1-kfl resistive load is connected to the secondary terminals.
c. Repeat part (b) if the burden is changed to a 1-kf2 reactance.
2.30 For the potential transformer of Problem 2.29, find the maximum reactive
burden (mimimum reactance) which can be applied at the secondary terminals
such that the voltage magnitude error does not exceed 0.5 percent.