282
where
the
notation
JjJx
signifies
~~,
~
al!J
v
1JJ
;:;.
The
constit-
=
at
+
ut
iv
e
equa
tions
become
<2.2)
Px
T
= - p -
2p-q,
(2.3)
1:
= -
q,
(2.11 )
r
=
d
2
( iJ
_ v
2
)
x
x
'
(2.5)
wh
ere
t he pr es s
ur
e
( 2. 6 )
( 2
.7)
A =
A(p,px)'
p and
dipolar
= 2 aA
p p ap'
q =
p2
2! .
d
P
X
pressu
re
q
are
defi
ned by
The cont i nui t y and momentum
equations
are
( 2. 8)
<2. 9 )
Suppose
(2.8)
and
(2.9)
hold
on
~2
and p and v
are
contin-
uous l y d
ifferentia
ble
fu
nction
s
of
x and t on
P2.
Suppose,
moreove r ,
th
at t her e
is
a
sur
f
ace
1:
x
{t
}
for
each
t
~
0
propa-
g
ating
in
the
:::-dire
ct
ion
with
sp
eed
un(~
0 ) . The quant
it
ies
v, iJ
x
' v
xx
'
~
,
Px' P
xx
a
re
assu
med co
nt
i nuous f un
ct
i ons
of
x , t
on (R , 1:) x R and hav e at mos t jump dis cont
in
ui
ti
es
acro
ss
1:.
The jump
in
a qua
ntit
y P i s d
ef
ined
by
(
2.
10)
wh
ere
a
super
scr i pt + s
ign
de
not
es
t he
re
gio
n ahead of t he wave,
a nega
tive
si gn denot i ng t he r
egion
beh
in
d t he wa
ve.
A s
ur
face
as d
efined
ahove
is
sa
id
to
be a o
ne-
dimens
io
nal
di
polar
stress
wave and
the
co
rr
esponding
wave am
pl
itude
s
ar
e
de
fined
by
(
2.11
)
<2.1
2 )
B = [
px
J.
c = rvl-
.:::