ɥɟɧɢɹ. Ɋɚɫɫɦɨɬɪɢɦ ɝɚɡ ɱɚɫɬɢɰ ɫ ɫɢɦɦɟɬɪɢɱɧɨɣ ɜɨɥɧɨɜɨɣ ɮɭɧɤ-
ɰɢɟɣ, ɨɩɢɫɵɜɚɟɦɵɯ ɜɨ ɜɬɨɪɢɱɧɨɦ ɤɜɚɧɬɨɜɚɧɢɢ ɨɩɟɪɚɬɨɪɚɦɢ
ɪɨɠɞɟɧɢɹ a
+
ɢ ɭɧɢɱɬɨɠɟɧɢɹ a ɢ ɩɨɞɱɢɧɹɸɳɢɯɫɹ ɫɥɟɞɭɸɳɢɦ
ɤɨɦɦɭɬɚɰɢɨɧɧɵɦ ɫɨɨɬɧɨɲɟɧɢɹɦ (Ȼɨɡɟ):
aa aa aa aa aa aa
kk kk kk kk kk kk kk'' ' '' ''
,,
G
00. (9.1)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɜ ɨɬɥɢɱɢɟ ɨɬ ɮɟɪɦɢɨɧɨɜ ɜɨɥɧɨɜɚɹ
ɮɭɧɤɰɢɹ ɫɢɦɦɟɬɪɢɱɧɚ ɩɨ ɩɟɪɟɫɬɚɧɨɜɤɚɦ ɤɨɨɪɞɢɧɚɬ (ɢɢɦɩɭɥɶ-
ɫɨɜ) ɱɚɫɬɢɰ. ɇɚ ɜɨɥɧɨɜɭɸ ɮɭɧɤɰɢɸ ɜ ɩɪɟɞɫɬɚɜɥɟɧɢɢ ɱɢɫɟɥ
ɡɚɩɨɥɧɟɧɢɹ |n
k1
....n
kN
>, ɝɞɟ n
ki
- ɱɢɫɥɚ ɡɚɩɨɥɧɟɧɢɹ ɜ ɫɨɫɬɨɹɧɢɢ
ɫ ɢɦɩɭɥɶɫɨɦ k
i
, ɨɧɢ ɞɟɣɫɬɜɭɸɬ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
an nn an n n aan nn
kk kk kk k k kkk kk
||,| |,||! ! ! ! !
111 . (9.2)
ɑɢɫɥɚ ɡɚɩɨɥɧɟɧɢɹ ɤɜɚɧɬɨɜɵɯ ɫɨɫɬɨɹɧɢɣ ɩɪɢ ɫɢɦɦɟɬ-
ɪɢɱɧɵɯ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɹɯ ɧɢɱɟɦ ɧɟ ɨɝɪɚɧɢɱɟɧɵ (ɜ ɨɬɥɢɱɢɟ
ɨɬ ɩɪɢɧɰɢɩɚ ɉɚɭɥɢ ɜ ɮɟɪɦɢɨɧɚɯ) ɢ ɦɨɝɭɬ ɢɦɟɬɶ ɩɪɨɢɡɜɨɥɶɧɵɟ
ɡɧɚɱɟɧɢɹ. Ɏɭɧɤɰɢɸ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɛɨɡɟ-ɱɚɫɬɢɰ ɧɟɫɥɨɠɧɨ ɩɨ-
ɥɭɱɢɬɶ, ɪɚɫɫɦɨɬɪɟɜ ɬɟɪɦɨɞɢɧɚɦɢɱɟɫɤɢɣ ɩɨɬɟɧɰɢɚɥ ɫɢɫɬɟɦɵ
, ɝɞɟ ɫɬɚɬɢɫɬɢɱɟɫɤɚɹ ɫɭɦɦɚ Q ɜ ɛɨɥɶɲɨɦ ɤɚɧɨɧɢ-
ɱɟɫɤɨɦ ɚɧɫɚɦɛɥɟ (ɫ ɭɱɟɬɨɦ ɯɢɦɢɱɟɫɤɨɝɨ ɩɨɬɟɧɰɢɚɥɚ
P
) ɢɞɥɹ
ɫɢɫɬɟɦɵ ɧɟɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɱɚɫɬɢɰ ɢɦɟɟɬ ɜɢɞ:
: TQln
QNTET
N
nN
n
k
n
n
k
k
¦¦ ¦
exp{ / }[ exp{ / }] (exp[ ( )])
PE
PH
, (9.3)
ɬɚɤ ɤɚɤ ɷɧɟɪɝɢɹ n
k
ɱɚɫɬɢɰ ɜ ɫɨɫɬɨɹɧɢɢ k ɪɚɜɧɚ
H
k
n
k
. Ɉɬɦɟɬɢɦ,
ɱɬɨ ɦɵ ɢɧɬɟɪɟɫɭɟɦɫɹ ɤɨɧɤɪɟɬɧɵɦ ɫɨɫɬɨɹɧɢɟɦ k ɢ ɟɝɨ ɡɚɩɨɥɧɟ-
ɧɢɟɦ, ɬɚɤ ɤɚɤ ɜ ɨɬɫɭɬɫɬɜɢɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɜɫɟ ɫɨɫɬɨɹɧɢɹ ɫɬɚ-
ɬɢɫɬɢɱɟɫɤɢ ɧɟɡɚɜɢɫɢɦɵ. Ɂɚɦɟɬɢɦ, ɱɬɨ ɦɵ ɩɨɥɭɱɢɥɢ ɜ (9.3)
ɝɟɨɦɟɬɪɢɱɟɫɤɭɸ ɩɪɨɝɪɟɫɫɢɸ, ɢ ɞɥɹ ɟɟ ɫɯɨɞɢɦɨɫɬɢ ɧɟɨɛɯɨɞɢ-
ɦɨ, ɱɬɨɛɵ
exp[ ( )]
k
1. ɗɬɨ ɭɫɥɨɜɢɟ ɞɨɥɠɧɨ ɜɵɩɨɥɧɹɬɶ-
160