ɫɢɬɨɧɧɭɸ ɫɜɹɡɶ, ɬ.ɟ. ɩɟɪɟɯɨɞ ɦɨɠɟɬ ɩɪɨɢɫɯɨɞɢɬɶ ɩɨ ɬɟɦɩɟɪɚ-
ɬɭɪɟ.
Ɋɚɫɫɦɨɬɪɢɦ ɫɧɚɱɚɥɚ ɤɚɱɟɫɬɜɟɧɧɨ ɷɥɟɤɬɪɨɧ-ɞɵɪɨɱɧɭɸ
ɩɚɪɭ ɜ ɩɪɢɛɥɢɠɟɧɢɢ ɷɮɮɟɤɬɢɜɧɨɣ ɦɚɫɫɵ ɜɛɥɢɡɢ ɞɧɚ ɡɨɧɵ ɩɪɨ-
ɜɨɞɢɦɨɫɬɢ ɢ ɜɟɪɯɚ ɜɚɥɟɧɬɧɨɣ ɡɨɧɵ ɫ ɷɧɟɪɝɢɹɦɢ
EpmEE pmEm m
eefh f
1
2
2
2
22
22,,
h
.
ɍɱɢɬɵɜɚɹ ɜɡɚɢɦɧɨɟ ɤɭɥɨɧɨɜɫɤɨɟ ɩɪɢɬɹɠɟɧɢɟ, ɡɚɩɢɲɟɦ ɫɭɦ-
ɦɚɪɧɭɸ ɷɧɟɪɝɢɸ ɷɤɫɢɬɨɧɚ - ɷɥɟɤɬɪɨɧ-ɞɵɪɨɱɧɨɣ ɩɚɪɵ (ɡɚ ɜɵɱɟ-
ɬɨɦ ɨɬɫɱɟɬɚ ɨɬ ɭɪɨɜɧɹ Ɏɟɪɦɢ 2E
f
), ɪɚɡɞɟɥɹɹ ɢɦɩɭɥɶɫɵ ɧɚ ɢɦ-
ɩɭɥɶɫ ɨɬɧɨɫɢɬɟɥɶɧɨɝɨ ɞɜɢɠɟɧɢɹ p ɢ ɢɦɩɭɥɶɫ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ
ɢɧɟɪɰɢɢ ɫɢɫɬɟɦɵ P:
EE E p m p m er
pmPMer
m
mm
mm
Mm m
pmpmp mm Ppp
eh e h
eh
eh
eh
eh
ooo oo
1
2
2
22
222
21 1
2
12
22
22 ,
,,
[]/[],
o
.
(8.14)
ɉɪɟɧɟɛɪɟɝɚɹ ɞɜɢɠɟɧɢɟɦ ɰɟɧɬɪɚ ɢɧɟɪɰɢɢ (P=0), ɜɢɞɢɦ, ɱɬɨ
ɫɢɫɬɟɦɚ ɦɨɠɟɬ ɢɦɟɬɶ ɫɜɹɡɚɧɧɨɟ ɫɨɫɬɨɹɧɢɟ (ɫɦ., ɧɚɩɪɢɦɟɪ, ɚɧɚ-
ɥɢɡ (8.1)-(8.4)), ɬɚɤ ɱɬɨ ɷɧɟɪɝɢɹ ɨɬɞɟɥɶɧɨ ɷɥɟɤɬɪɨɧɚ ɢ ɞɵɪɤɢ
ɛɨɥɶɲɟ, ɱɟɦ ɫɭɦɦɚɪɧɚɹ ɷɧɟɪɝɢɹ ɩɚɪɵ.
Ɋɚɫɫɱɢɬɚɟɦ ɬɟɩɟɪɶ ɤɨɪɪɟɤɬɧɨ (ɜ ɩɨɞɯɨɞɟ Ʉɟɥɞɵɲɚ-
Ʉɨɩɚɟɜɚ) ɮɚɡɨɜɵɣ ɩɟɪɟɯɨɞ ɞɢɷɥɟɤɬɪɢɤ - ɦɟɬɚɥɥ, ɭɱɢɬɵɜɚɹ ɫɭ-
ɳɟɫɬɜɨɜɚɧɢɟ ɷɥɟɤɬɪɨɧ-ɞɵɪɨɱɧɵɯ ɩɚɪ ɜ ɫɢɫɬɟɦɟ.
Ɋɚɫɫɦɨɬɪɢɦ
ɝɚɦɢɥɶɬɨɧɢɚɧ ɩɨɥɭɦɟɬɚɥɥɚ, ɭɱɢɬɵɜɚɹ ɬɨɥɶɤɨ ɜɚ-
ɥɟɧɬɧɭɸ ɡɨɧɭ ɢ ɡɨɧɭ ɩɪɨɜɨɞɢɦɨɫɬɢ ɜɛɥɢɡɢ ɭɪɨɜɧɹ Ɏɟɪɦɢ:
HaaEpbbEp Uabba
pp pp pp ppp p
ppp
¦¦
{() ()}
''
,'
12 '
. (8.15)
Ɂɞɟɫɶ ɨɩɟɪɚɬɨɪ a
+
(b
+
) - ɨɩɟɪɚɬɨɪ ɪɨɠɞɟɧɢɹ ɷɥɟɤɬɪɨɧɚ (ɞɵɪɤɢ)
ɜ ɡɨɧɟ ɩɪɨɜɨɞɢɦɨɫɬɢ (ɜɚɥɟɧɬɧɨɣ ɡɨɧɟ), E
1
, E
2
- ɫɨɨɬɜɟɬɫɬɜɭɸ-
134