159
9. ɄɈɇȾȿɇɋȺɐɂə ɂ ɋȼȿɊɏɌȿɄɍɑȿɋɌɖ
ȼ ȻɈɁȿ-ȽȺɁȿ
Ɋɚɫɫɦɨɬɪɢɦ ɬɟɩɟɪɶ ɮɚɡɨɜɵɟ ɩɟɪɟɯɨɞɵ, ɩɪɨɢɫɯɨɞɹɳɢɟ ɜ
ɫɢɫɬɟɦɚɯ ɫ ɢɫɯɨɞɧɨ ɛɨɡɨɧɧɵɦɢ ɫɬɟɩɟɧɹɦɢ ɫɜɨɛɨɞɵ. Ⱦɨ ɫɢɯ
ɩɨɪ ɦɵ ɢɦɟɥɢ ɞɟɥɨ ɫ ɛɨɡɟ-ɫɬɚɬɢɫɬɢɤɨɣ ɩɪɢ ɢɫɫɥɟɞɨɜɚɧɢɢ ɬɟɪ-
ɦɨɞɢɧɚɦɢɤɢ ɫɩɢɧɨɜɵɯ ɜɨɡɛɭɠɞɟɧɢɣ - ɦɚɝɧɨɧɨɜ. ɂɫɫɥɟɞɭɟɦ ɜ
ɷɬɨɣ ɝɥɚɜɟ ɫɬɚɬɢɫɬɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɢɞɟɚɥɶɧɨɝɨ ɢ ɫɥɚɛɨ ɧɟɢɞɟ-
ɚɥɶɧɨɝɨ ɛɨɡɟ-ɝɚɡɚ, ɛɨɡɟ-ɤɨɧɞɟɧɫɚɰɢɸ ɩɪɢ ɧɢɡɤɢɯ ɬɟɦɩɟɪɚɬɭ-
ɪɚɯ, ɤɪɢɬɟɪɢɣ ɫɜɟɪɯɬɟɤɭɱɟɫɬɢ Ʌɚɧɞɚɭ. Ɉɬɦɟɬɢɦ, ɱɬɨ ɢɡ ɪɟɚɥɶ-
ɧɵɯ ɫɢɫɬɟɦ ɫ ɛɨɡɟ-ɫɬɚɬɢɫɬɢɤɨɣ ɦɨɠɧɨ ɜɵɞɟɥɢɬɶ ɮɨɧɨɧɵ (ɤɨ-
ɥɟɛɚɧɢɹ ɤɪɢɫɬɚɥɥɢɱɟɫɤɨɣ ɪɟɲɟɬɤɢ) ɜ ɬɜɟɪɞɨɦ ɬɟɥɟ, ɫɜɟɪɯɬɟɤɭ-
ɱɢɣ ɝɟɥɢɣ, ɮɨɬɨɧɵ, ɤɭɩɟɪɨɜɫɤɢɟ ɩɚɪɵ ɜ ɫɜɟɪɯɩɪɨɜɨɞɧɢɤɚɯ,
ɛɨɡɟ-ɤɨɧɞɟɧɫɚɰɢɸ ɷɤɫɢɬɨɧɧɵɯ ɜɨɡɛɭɠɞɟɧɢɣ ɜ ɩɨɥɭɩɪɨɜɨɞɧɢ-
ɤɚɯ, ɫɩɢɧɨɜɵɟ ɜɨɡɛɭɠɞɟɧɢɹ ɜ ɦɚɝɧɟɬɢɤɚɯ ɢ ɬ.ɞ.
9.1. Ȼɨɡɟ-ɤɨɧɞɟɧɫɚɰɢɹ ɜ ɢɞɟɚɥɶɧɨɦ ɝɚɡɟ -
ɮɚɡɨɜɵɣ ɩɟɪɟɯɨɞ ɜɬɨɪɨɝɨ ɪɨɞɚ
Ʉɚɤ ɨɬɦɟɱɚɥɨɫɶ ɩɪɢ ɜɵɜɨɞɟ ɨɛɦɟɧɧɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ
ɜɝɥ. 1, ɞɥɹ ɚɧɫɚɦɛɥɹ ɨɞɢɧɚɤɨɜɵɯ ɤɜɚɧɬɨɜɵɯ ɱɚɫɬɢɰ ɞɨɥɠɟɧ
ɜɵɩɨɥɧɹɬɶɫɹ ɩɪɢɧɰɢɩ ɬɨɠɞɟɫɬɜɟɧɧɨɫɬɢ, ɬ.ɟ. ɫɨɫɬɨɹɧɢɹ ɫɢɫɬɟ-
ɦɵ, ɩɨɥɭɱɚɸɳɢɟɫɹ ɞɪɭɝ ɢɡ ɞɪɭɝɚ ɩɪɨɫɬɨ ɩɟɪɟɫɬɚɧɨɜɤɨɣ ɤɨɨɪ-
ɞɢɧɚɬ ɱɚɫɬɢɰ, ɞɨɥɠɧɵ ɛɵɬɶ ɮɢɡɢɱɟɫɤɢ ɩɨɥɧɨɫɬɶɸ ɷɤɜɢɜɚɥɟɧɬ-
ɧɵ. ɗɬɨ ɡɧɚɱɢɬ, ɱɬɨ ɜ ɪɟɡɭɥɶɬɚɬɟ ɬɚɤɨɣ ɩɟɪɟɫɬɚɧɨɜɤɢ ɜɨɥɧɨɜɚɹ
ɮɭɧɤɰɢɹ ɫɢɫɬɟɦɵ ɦɨɠɟɬ ɢɡɦɟɧɢɬɶɫɹ ɬɨɥɶɤɨ ɧɚ ɧɟɫɭɳɟɫɬɜɟɧ-
ɧɵɣ ɮɚɡɨɜɵɣ ɦɧɨɠɢɬɟɥɶ.
Ⱦɪɭɝɢɦɢ ɫɥɨɜɚɦɢ, ɟɫɥɢ
|
<
(1,2)|
2
=|
<
(2,1)|
2
, ɬɨ
<
(1,2)=exp(i
D
)
<
(2,1), ɝɞɟ
D
- ɜɟɳɟɫɬ-
ɜɟɧɧɚɹ ɩɨɫɬɨɹɧɧɚɹ. ɉɨɜɬɨɪɧɚɹ ɩɟɪɟɫɬɚɧɨɜɤɚ ɞɚɟɬ exp(2i
D
=1,
ɬɨ ɟɫɬɶ
<
(1,2)=r
<
(2,1). ɉɨɷɬɨɦɭ ɜɨɥɧɨɜɚɹ ɮɭɧɤɰɢɹ ɥɢɛɨ ɫɢɦ-
ɦɟɬɪɢɱɧɚ ( ɷɬɨ ɫɬɚɬɢɫɬɢɤɚ Ȼɨɡɟ), ɥɢɛɨ ɚɧɬɢɫɢɦɦɟɬɪɢɱɧɚ (ɷɬɨ
ɫɬɚɬɢɫɬɢɤɚ Ɏɟɪɦɢ). ɗɬɨɬ ɮɚɤɬ ɨɬɪɚɠɚɟɬɫɹ ɧɚ ɫɨɨɬɧɨɲɟɧɢɹɯ
ɤɨɦɦɭɬɚɰɢɢ ɩɪɢ ɨɩɢɫɚɧɢɢ ɫɢɫɬɟɦɵ ɜ ɬɟɪɦɢɧɚɯ ɜɬɨɪɢɱɧɨ-
ɤɜɚɧɬɨɜɚɧɧɵɯ ɨɩɟɪɚɬɨɪɨɜ, ɚ ɬɚɤɠɟ ɧɚ ɜɢɞɟ ɮɭɧɤɰɢɢ ɪɚɫɩɪɟɞɟ-