98 Modeling and Control of Vibration in Mechanical Systems
where
A
k
= A + γ
−2
B
1
B
T
1
X
∞
− B
2
F
∞
− B
k1
C
2z
, (5.64)
B
k1
B
k2
=
B
1
D
T
21
+ Z
∞
C
T
2z
B
2
+ γ
−2
Z
∞
F
T
∞
, (5.65)
C
k1
C
k2
=
−F
∞
−C
2z
, (5.66 )
C
2z
= C
2
+ γ
−2
D
21
B
T
1
X
∞
, F
∞
= D
T
12
C
1
+ B
T
2
X
∞
, (5.67 )
Z
∞
= Y
∞
(I − γ
−2
X
∞
Y
∞
)
−1
= (I − γ
−2
Y
∞
X
∞
)
−1
Y
∞
. (5.68 )
A point given by Theorem 5.2 is that a solution to the H
∞
generalized regulator
problem exists if and on ly if there exist stabilizing, nonnegative definite solutions
X
∞
and Y
∞
to the algebraic Riccati equations associated with the full information
H
∞
control problem and the H
∞
estimation of C
1
x such that the coupling condition
ρ(X
∞
Y
∞
) < γ
2
is satisfied.
The optimal H
∞
control prob lem is to fin d an i nternally stabil izing controller
C(s) such that kT
zw
k
∞
of the closed-loop system (5.26)−(5.27) is minimized.
However, in practice it is often not necessary to design an optimal controller, and
it is usually appropriate to o btain a controller that gives ri se to an H
∞
norm of the
closed-loo p system less than a prescribed value. More specifically, a suboptimal H
∞
control pro blem is that given γ > 0, find an admissible controller C, if there is any,
such that kT
zw
k
∞
< γ.
The following theorem gives a design method for a suboptimal H
∞
output feed-
back controller.
THEOREM 5.3
[90] Consider system (5.21)−(5.23). Given a scalar γ > 0, there exists an
output feedback controller (5.24)−(5.25) such that kT
zw
k
2
∞
< γ if the following
LMI admits a solution (E, W, U, D
c
, X, Y ):
AX + XA
T
+ B
2
E + (B
2
E)
T
U
T
+ A + B
2
D
c
C
2
∗ A
T
Y + Y A + W C
2
+ (W C
2
)
T
∗ ∗
∗ ∗
,
B
1
+ B
2
W D
c
D
21
(C
1
X + D
12
E)
T
Y B
1
+ W D
21
(C
1
+ D
12
D
c
C
2
)
T
−γI (D
11
+ D
12
D
c
D
21
)
T
∗ −γI
< 0, (5.69)
X I
I Y
> 0 . (5.70)
In this case, a feasible H
∞
controller i s obtained from (5.51)−(5.53), where
N
1
M
1
= I − Y X.