High Precision Calculations for Helium 11.4 Total Energies 211
Table 11.7 Total ionization energies for
4
He, calculated with R
M
= 3 289 391 006.715 MHz, cont.
State E(n
1
L
L
) E(n
3
L
L−1
) E(n
3
L
L
) E(n
3
L
L+1
)
9D 40 628 480.2670(3) 40 635 090.4472(6) 40 635 138.9215(4) 40 635 142.3606(2)
9F 40 613 531.5089(1) 40 613 567.5551(2) 40 613 602.5777(2) 40 613 590.2103(1)
9G 40 610 783.198 70(5) 40 610 791.952 31(8) 40 610 819.103 53(8) 40 610 804.897 45(5)
9H 40 610 123.035 88(2) 40 610 129.318 02(3) 40 610 147.011 47(3) 40 610 137.736 30(2)
9I 40 609 914.516 79(1) 40 609 919.226 38(2) 40 609 931.659 73(2) 40 609 925.154 18(1)
9K 40 609 835.097 59 40 609 838.746 17(1) 40 609 847.963 12(1) 40 609 843.152 44
10S 33 834 679.6(2) 34 938 883.9(2)
10P 32 814 665.30(8) 33 346 784.3(2) 33 346 985.6(1) 33 347 001.97(3)
10D 32 907 601.9150(2) 32 912 470.7559(4) 32 912 506.0839(3) 32 912 508.5992(1)
10F 32 896 683.0965(1) 32 896 710.0670(1) 32 896 735.3970(1) 32 896 726.5815(1)
10G 32 894 665.770 94(3) 32 894 672.155 70(5) 32 894 691.945 68(5) 32 894 681.592 48(3)
10H 32 894 178.909 63(1) 32 894 183.489 34(2) 32 894 196.387 81(2) 32 894 189.626 22(1)
10I 32 894 024.241 08(1) 32 894 027.674 38(1) 32 894 036.738 28(1) 32 894 031.995 73(1)
10K 32 893 964.927 04 32 893 967.586 86(1) 32 893 974.306 01(1) 32 893 970.799 02
Table 11.8 QED corrections to the ionization energy in-
cluded in Table 11.7 for the S- and P-states of helium (in
MHz)
E
L,1
+ E
L,1
E
L,2
+ E
L,2
State Singlet Triplet Singlet Triplet
1S −45 409. 4173.
a
2S −3134.4 − 4098.7 327.865 39.883
a
3S − 858.34 − 1030.29 91.258 8.468
4S − 349.09 − 402.29 37.303 3.203
5S − 174.93 − 196.80 18.735 1.544
6S − 99.807 − 110.505 10.702 0.861
7S − 62.221 − 68.113 6.677 0.528
8S − 41.369 − 44.904 4.441 0.347
9S − 28.885 − 31.147 3.102 0.240
10S − 20.959 − 22.482 2.251 0.173
2P − 103.6 1208.7 62.608 45.502
3P − 35.13 344.96 19.559 12.376
4P − 15.15 142.33 8.413 5.035
5P − 7.816 71.911 4.348 2.529
6P − 4.540 41.256 2.529 1.446
7P − 2.866 25.824 1.598 0.904
8P − 1.923 17.223 1.073 0.602
9P − 1.352 12.055 0.755 0.421
10P − 0.987 8.764 0.551 0.306
a
Includes additional contributions of −4MHz for the 1
1
S
state [11.48] and 3.00(1) MHz for the 2
3
S state [11.47] due
to electron–electron terms of O
#
α
4
$
R
∞
11.4.1 Quantum Defect Extrapolations
As discussed in Sect. 14.1, the ionization energies of an
isolated Rydberg series of states can be expressed in the
form
W
n
= R
M
(Z − 1)
2
/n
∗2
, (11.50)
where Z − 1 is the screened nuclear charge and n
∗
is
the effective principal quantum number defined by an
iterative solution to the equation
n
∗
= n − δ(n
∗
), (11.51)
where δ(n
∗
) is the quantum defect defined by the Ritz
expansion
δ(n
∗
) = δ
0
+
δ
2
(n − δ)
2
+
δ
4
(n − δ)
4
+··· (11.52)
with constant coefficients δ
i
. The absence of odd terms
in this series is a special property of the eigenvalues of
Hamiltonians of the form H
C
+ V ,whereH
C
is a pure
one-electron Coulomb Hamiltonian, and V is a local,
short-range, spherically symmetric potential of arbitrary
strength (see [11.54] for further discussion). For the Ry-
dberg states of helium, odd terms must be included in
the Ritz expansion (11.52) due to relativistic and mass
polarization corrections, but they can be removed again
by first adjusting the energies according to
W
n
= W
n
− ∆W
n
, (11.53)
Part B 11.4