34
n.
Weak
solutions
and
local
energy
estimates
II
l,pl
{ID(u - k)±(1 + (u - k)±(P-1ID(I} dxdr
Q+(9.p)
~
~o
fl
ID(u
- k)±(IPdxdr +
"((P)
If
(u - k)'±ID(IPdxdr
Q+(9.p)
Q+(9.p)
+
"(
(p,
\lu\lao.aT)
II
(?/Io
+
?/Ilr;;~
X
[(u
- k)± >
0]
dxdr.
Q+(9.p)
Finally
f f
l,puIlD(u
- k)±I(u - k)±(Pdxdr
Q+(9.p)
~
"(
II
l,pul
{ID(u - k)±(I(u -
k)±(p-l
+
(u
-
k)~(P-IID(I}
dxdr
Q+(9.p)
~
~o
II
ID(u-k)±(I
P
dxdr+"(p,6
0
)
fl(u-k)'±ID(IPdxdr
Q+(9.p) Q+(9.p)
+
"(
(p,
"u\lao.a
T
)
If
?/1ft
X
[(u
- k)± >
0]
dxdr.
Q+(9.p)
Combining these estimates implies that the boundary integral on the right hand
side
of
(4.9) can be estimated by
~o
fIID(U
- k)±(IPdxdr +
"((P,
"u"ao.a
T
)
ff
(u - k)'±ID(IPdxdr
Q+(9.p)
Q+(9.p)
+ "(p,6
0
)
ff
(1
+?/Io
+
?/Id~
X
[(u
- k)± >
0]
dxdr.
Q+(9.p)
We
put this in (4.9) and, to conclude the proof, estimate the integral involving the
functions
!Pi,
i=O,
1,2,
and
?/Ii,
i=O, I,
as in the proof
of
Proposition 3.1.
The proof
of
the logarithmic estimate (4.7) near the lateral boundary
ST
is
similar to the proof
of
the interior logarithmic estimate (3.14), modulo the modi-
fications indicated above and we omit the details.
4-(;;). Dirichlet boundary data
Let u be a weak solution
of
the Dirichlet problem (2.1), which in addition satisfies
(4.1). The assumption (D) on the boundary datum 9 is retained.
Fix
(xo,to) EST and consider the cylinder [(xo,t
o
) + Q(8,p)], where 8 is
so small that
to
- 8 >
O.
Local energy estimates for u near (x
o
,
to)
are obtained by
taking, in the weak formulation (2.5), the testing functions