10.
The
second alternative
103
(
w
)~
!.=.I!
(10.2) Q (R", d.R)
==
Kd.R x
(-R",
0) d. = 2
so
+
n
=
do
(2n) p •
The cylinders obtained this way are contained in Q
(RP
,
CoR),
if
the abscissa x
of
their 'vertices' ranges
over
the cube
K'R.l(W)'
where
'R.
1
(w)
=
{A
2
-"
-
2(Bo+n)~}
w~
R
=
--
-1
--
R
{(
A)~
} ( w
)~
2so+n
2
B
o+n
!.=.I!
where
Ll
==
(~)
p - 1.
2
B
o+n
We will take A larger than 2
B
o+n
and arrange that
Ll
is an integer. Then we re-
gard
Q (R",
CoR)
as the union, up to a set
of
measure zero,
of
Lf
pairwise disjoint
boxes each congruent to
Q
(RP,
d.
R).
Each
of
the cylinders
[(x,
0) + Q
(RP,
d.
R)]
is the pairwise disjoint union
of
boxes
[(x,
0) + Q (R",
doR)]
satisfying (10.1).
Therefore we rephrase (3.5) as
(10.3)
I(X,
t) E
[(x,
0) + Q (R", d.R)] I u(x, t) >
p.+
-
2~o
I
<
(1
-
vo)IQ
(R", d.R)
I,
for all boxes
[(x,
0) + Q (RP,d.R)] making up the partition
ofQ
(R",coR).
LEMMA
10.1. Let
[(x,
0)
+ Q (R", d.R)]
be
any
box contained
in
Q
(RP,
CoR)
and satisfying
(10.3).
There
exists a time level
t·
E
(-R"
-
Vo
R")
, 2 '
such
that for all S
~
So
+ 1,
(10.4)
Ix
E
[x
+ Kd.R] I u(x,
t·)
>
p.+
-
;.1
<
(II_-
v
:/
2
)
IKd.RI·
PROOF:
If
(10.4) is violated for all
tE
(-R",
-~R").
then
I(X,
t) E
[(x,
0) + Q (R", d.R)] I u(x, t) >
p.+
-
2~o
I
--1'RP
~
fix
E
[x
+ Kd.R] I
u(x,
t)
>
p.+
-
;.Idt
-RP
~
(1
-
vo)IQ
(R", d.R)
I,
contradicting (10.3).
The
next lemma asserts that a property similar to (10.4) continues to hold for
all time levels from
t·
up
to
O.
The proof
of
the lemma will also detennine the
numbern.