Ghose TK, Tyagi RD (1979), Rapid ethanol fermentation of cellulose hydrolysate. II.
Product and substrate inhibition and optimization of fermentor design, Biotech-
nol. Bioeng. 21:1401–1420.
Glacken MW, Huang C, Sinskey AJ (1989), Mathematical descriptions of hybridoma
culture kinetics. III Simulation of fed-batch bioreactors, J. Biotechnol. 10:39–66.
Harigae M, Matsumura M, Kataoka H (1994), Kinetic study on HBs-MAb production
in continuous cultivation, J. Biotechnol. 34:227–235.
Hiller GW, Aeschlimann AD, Clark DS, Blanch HW (1991), A kinetic analysis of
hybridoma growth and metabolism in continuous suspension culture on serum-
free medium, Biotechnol. Bioeng. 38:733–741.
Himmelblau DM (1972), Applied Nonlinear Programming, McGraw-Hill, New York.
Hiss H (2001), Cine´tica de processos fermentativos, In: Schmidell W, Lima UA,
Aquarone E, Borzani W (Eds), Biotecnologia Industrial, vol. 2, Engenharia
Bioquı´mica, Edgard Blu
¨
cher, Brazil, pp. 93–122.
Kurokawa H, Park YS, Iijima S, Kobayashi T (1994), Growth characteristics in fed-
batch culture of hybridoma cells with control of glucose and glutamine concentra-
tions, Biotechnol. Bioeng. 44:95–103.
Lancaster P, Salkauskas K (1986), Curve and Surface Fitting, Academic Press, London.
Le Duy A, Zajic JE (1973), A geometrical approach for differentiation of an experi-
mental function at a point: applied to growth and product formation, Biotechnol.
Bioeng. 15:805–810.
Lee CY (2003), Estrate´gias para otimizac¸a
˜
o da produc¸a
˜
o de anticorpo monoclonal
anti-TNP (trinitrofenil) em sistema de biorreator agitado: fortificac¸a
˜
o do meio e
processo descontı´nuo alimentado. Dissertac¸a
˜
o de Mestrado, Programa de Mestra-
do em Biotecnologia Interunidades USP-I.Butantan-IPT.
Lee YK, Yap PK, Teoh AP (1995), Correlation between steady-state cell concentration
and cell death of hybridoma cultures in chemostat, Biotechnol. Bioeng. 45:18–26.
Linardos TI, Kalogerakis N, Behie LA, Lamontagne LR (1991), The effect of specific
growth rate and death rate on monoclonal antibody production in hybridoma
chemostat cultures, Can. J. Chem. Eng. 69:429–438.
Linardos TI, Kalogerakis N, Behie LA (1992), Cell cycle model for growth rate and
death rate in continuous suspension hybridoma cultures, Biotechnol Bioeng.
40:359–368.
Luedeking R, Piret EL (1959), A kinetic study of the lactic acid fermentation. Batch
process at controlled pH, J. Biochem. Microbiol. Technol. Eng. 1:393–412.
Martens DE, Sipkema EM, de Gooijer CD, Beuvery EC, Tramper J (1995), A
combined cell-cycle and metabolic model for the growth of hybridoma cells in
steady-state continuous culture, Biotechnol. Bioeng. 48:49–65.
Megee RD, Drake JF, Fredrickson AG, Tsuchiya HM (1972), Studies in intermicrobial
symbiosis of Saccharomyces cerevisiae and Lactobacillus casei, Can. J. Microbiol.
18:1733–1742.
Miller WM, Reddy A (1998), Quantitative analysis of cell growth, metabolism, and
product formation, In: Doyle A, Griffiths JB (Eds), Cell and Tissue Culture:
Laboratory Procedures in Biotechnology, John Wiley & Sons, Guildford, UK, pp.
133–159.
Miller WM, Blanch HW, Wilke CR (1988), A kinetic analysis of hybridoma growth
and metabolism in batch and continuous suspension culture: effect of nutrient
concentration, dilution rate, and pH. Biotechnol. Bioeng. 32:947–965.
Monod J (1942), Recherches sur la Croissance de Culture Bacterienne, Hermann &
Cie, Paris.
Monod J (1949), The growth of bacterial cultures, Annu. Rev. Microbiol. 3:371–394.
Moser H (1958), The dynamics of bacterial population maintained in the chemostat.
Carnegie Institution of Washington, Washington.
Nielsen J, Nikolajsen K (1988), Review and discussion of literature on mathematical
Mathematical models for growth and product synthesis in animal cell culture 219