
EXERCISES
Problems for Practice
c Let F(x) 5 x
2
1 5, G(x) 5 (x 1 1)/(x21), and H(x) 5 2x25.
In Exercises 110, calculate the value of the given function
at x. b
1. F 1 G
2. F 2 3H
3. G 3 H
4. H 3 G
5. H F 2 H 3 F
6. G/F
7. F 3 G 3 H
8. H 3 F 2 F 3 H
9. G 3 (1/G)
10. H 3 H 3 H 2 H 3 H
c In Exercises 1114, write the function h as
the composi-
tion h 5 g 3 f of two functions. (There is more than one correct
way to do this.) b
11. h(x) 5 (x 2 2)
2
12. h(x) 5 2x 1 7
13. h(x) 5 (x
3
1 3x)
4
14. h(x) 5 3/
ffiffiffi
x
p
c In Exercises 1518, find a function g such
that h 5 g 3 f. b
15. h(x) 5 3x
2
1 6x 1 4, f (x) 5 x 1 1
16. h(x) 5 x
2
1 4, f (x) 5 x 2 1
17. h(x) 5 (x
2
1 1)/(x
4
1 2x
2
1 3), f (x) 5 x
2
1 1
18. h(x) 5 2x
2
1 x2
ffiffiffi
x
6
p
1 1, f (x) 5
ffiffiffi
x
p
c Let f (x) 5
ffiffiffiffiffiffiffiffiffiffiffiffi
ffi
2x 1 5
p
, and g(x) 5 x
21/3
. In Exercises 1922,
calculate the given expression. b
19. ( f 3 g)(1/8)
20. (g 3 f )(2)
21. f
2
(11) g
3
(54)
22. (g 3 g)(512)
c In each of Exercises 2326, write the given polynomial as
a
product of irreducible polynomials of degree one or two. b
23. x
2
1 4x25
24. x
3
1 x
2
24x24
25. x
4
1 2x
3
22x
2
28x28
26. x
4
1 3x
2
1 2
c In each of Exercises 2738, a function f : S - T is
speci-
fied. Determine if f is invertible. If it is, state the formula for
f
21
(t). Otherwise, state whether f fails to be one-to-one, onto,
or both. b
27. S 5 [0,N), T 5 [1,N), f (s) 5 s
2
1 1
28. S 5 [0, 2], T 5 [21, 1], f (s) 5 (s21)
2
29. S 5 [0, 1], T 5 [0, 2], f (s) 5 s
2
1 s
30. S 5 (0,N), T 5 (1,N), f (s) 5 s
4
1 1
31. S 5 [22, 5), T 5 [235, 98), f (s) 5 s
3
227
32. S 5 R, T 5 R, f (s) 5 s
4
22s
33. S 5 (4,N), T 5 (1, 16/15), f (s) 5 s
2
/(s
2
21)
34. S 5 [0, 1], T 5 [0, 1/2], f (s) 5 s/(s 1 1)
35. S 5 (1, 6), T 5 (2, 3), f ðsÞ5
ffiffiffiffiffiffiffiffiffiffi
s 1 3
p
36. S 5 (1, 4), T 5 (4, 5), f (s) 5
ffiffi
s
p
1 3
37. S 5 [1,N), T 5 (0, 1], f (s) 5 1/(s
2
1 1)
38. S 5 (0,N), T 5 (0, 1], f (s) 5 1/(1 1 s
4
)
39. Examine the graphs in Figure 18 and determine which
represent invertible functions. If the graph represents an
invertible function, draw a graph of the inverse.
c In Exercises 4043, two functions f and g are
given. Find a
constant h such that g(x) 5 f (x 1 h). What horizontal trans-
lation of the graph of f results in the graph of g? b
40. f (x) 5 2x 1 1, g(x) 5 2x 1 5
41. f (x) 5 123x, g(x) 5 723x
42. f (x) 5 x
2
1 4, g(x) 5 x
2
26x 1 13
43. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 x
2
p
; gðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x 2 x
2
p
c In Exercises 4447, two functions f and g are
given. Find
constants h and k such that g(x) 5 f (x 1 h) 1 k. Describe the
relationship between the plots of f and g. b
44. f (x) 5 x
2
, g(x) 5 x
2
1 2x 1 5
45. f (x) 5 3x
2
, g(x) 5 3x
2
1 12x
46. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 x
2
p
; gðxÞ5 1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x 2 x
2
p
47. f (x) 5 ( x 1 3)/x, g(x) 52x/(x 1 3)
c In Exercises 4852, describe the curve that is the graph of
the
given parametric equations. b
48. x 5 7, y 5 t
2
1 1, 21 # t # 2
49. x 5 2t 1 1, y 5 6t 2 4
50. x 5 1/t, y 5 3, 0 , t # 1
51. x 5 12t
2
1 1, y 5 2t
52. x 5 1/(1 1 t
2
), y 5 1 1 t
2
Further Theory and Practice
53. If p and q are nonzero polynomials, express the degree
deg ( p q)ofp q in terms of the degrees deg (p) and deg
(q)ofp and q. Do the same for deg (p 3 q). Is deg(p 3 q)
always equal to deg(q 3 p)? What is the relationship of
deg(p 6 q) to deg(p) and deg(q)?
54. Find all polynomials p such that (p 3 p)(x) 5 x. Hint: What
degree must p have?
55. Suppose p(x) is a polynomial of degree n . 1. Let
I(x) 5 x, and define f 5 p 3 (I 1 p). What is deg ( f)? How
are the roots of p related to the roots of f? Show that
there is a polynomial q such that f 5 p 3 q.
Illustrate with
p(x) 5 x
2
23x24.
62 Chapter 1 Basics