19 Lotus Effect: Roughness-Induced Superhydrophobic Surfaces 1071
118. Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, and Cao GZ, Optically trans-
parent superhydrophobic silica-based films, Thin Solid Films, 472 (2005) 37–43
119. Shi F, Song Y, Niu J, Xia X, Wang Z, and Zhang X, Facile Method To Fabricate a Large-
Scale Superhydrophobic Surface by Galvanic Cell Reaction, Chem. Mater., 18 (2006)
1365–1368
120. Shibuichi S, Onda T, Satoh N, and Tsujii K, Super-Water-Repellent Surfaces Resulting
from Fractal Structure, J.Phys. Chem., 100 (1996) 19512–19517
121. Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC, Dual-scale roughness
produces unusually water-repellent surfaces, Adv. Mater., 16 (2004) 1929–1932
122. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, and Roach P, Porous materials show
superhydrophobic to superhydrophilic switching, Chem. Commun., (2005) 3135–3137
123. Shiu J, Kuo C, Chen P, and Mou C, Fabrication of Tunable Superhydrophobic Surfaces
by Nanosphere Lithography, Chem. Mater., 16 (2004) 561–564
124. Shuttleworth R and Bailey GLJ, The Spreading of a Liquid Over a Rough Solid, Dis-
cussions of the Faraday Society, 3 (1948) 16–22
125. Stelmashenko NA, Craven JP, Donald AM, Terentjev EM, and Thiel BL, Topographic
contrast of partially wetting water droplets in environmental scanning electron mi-
croscopy, J. Micros., 204 (2001) 172–183
126. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, and Zhu D, Reversible Switching be-
tween Superhydrophilicity and Superhydrophobicity, Angew, Chem., 116 (2004) 361–
364
127. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, and Chen Y, Artificial Lotus Leaf by
Nanocasting, Langmuir, 21 (2005) 8978–8981
128. Tambe NS and Bhushan B, Scale dependence of micro/nano-friction and adhesion of
MEMS/NEMS materials, coatings and lubricants, Nanotechnology, 15 (2004) 1561–
1570
129. Teshima K, Sugimura H, Inoue Y, Takai O, and Takano A, Transparent ultra water-
repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment
and subsequent hydrophobic coating, Appl. Surf. Sci., 244 (2005) 619–622
130. Tretinnikov ON, Wettability and Microstructure of Polymer Surfaces: Stereochemical
and Conformational Aspects in Apparent and Microscopic Contact Angles (Drelich J,
Laskowski JS, and Mittal KL, eds., VSP, Utrecht, 2000) 111–128
131. Wagner P, Furstner R, Barthlott W, and Neinhuis C, Quantitative Assessment to the
Structural Basis of Water Repellency in Natural and Technical Surfaces, J. Exper.
Botany, 54 (2003) 1295–1303
132. Wang Y, Zhu Q, and Zhang H, Fabrication and magnetic properties of hierarchical
porous hollow nickel microspheres, J.
M
ater. Chem., 16 (2006) 1212–1214
133. Wenzel RN, Resistance of Solid Surfaces to Wetting by Water, Indust. Eng. Chem., 28
(1936) 988–994
134. Wu X, Zheng L, and Wu D, Fabrication of superhydrophobic surfaces from microstruc-
tured ZnO-based surfaces via a wet-chemical route, Langmuir, 21 (2005) 2665–2667
135. Xu L, Chen W, Mulchandani A, and Yan Y, Reversible Conversion of Conducting
Polymer Films from Superhydrophobic to Superhydrophilic, Angew. Chem. Int. Ed.,
44 (2005) 6009–6012
136. Yabu H and Shimomura M, Single-Step Fabrication of Transparent Superhydrophobic
Porous Polymer Films, Chem. Mater., 17 (2005) 5231–5234
137. Yoshimitsu Z, Nakajima A, Watanabe T, and Hashimoto K, Effects of Surface Structure
on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, 18 (2002)
5818–5822