Gronbech-Jensen, N., Mashl, R.J., Bruisma, R.F., Gelbart, W.M., 1997. Counterion-induced
attraction between rigid polyelectrolytes. Physical Review Letters 78, 2477–2480.
Hamid, S.A., 1981. The crystal structure of the 11 Angstro
¨
m natural tobermorite. Zeitschrift
fu
¨
r Kristallografie 154, 189–198.
Henderson, E., Bailey, J.E., 1988. Sheet-like structure of calcium silicate hydrate. Journal of
Materials Science 23, 501–508.
Jennings, H.M., 2000. A model for the microstructure of calcium silicate hydrate in cement
paste. Cement and Concrete Research 30, 101–116.
Jennings, H.M., Hsieh, J., Srinivasan, R., Jaiswal, S., Garci, M., Sohn, D., Hinners,
C., Heppner, S., Neubauer, C., 1996. Modelling and materials science of cement-based
materials. In: Jennings, H., Kropp, J., Scrivener, K. (Eds.), The Modeling of Microstruc-
ture and its Potential for Studying Transport Properties and Durability. NATO ASI Series
E: Applied Sciences, vol. 304. Kluwer Academic Publishers, Dordrecht, pp. 29–62.
Kjellander, R., Marcelja, S., 1984. Correlation and image charge effects in electric double
layers. Chemical Physics Letters 112, 49–53.
Kjellander, R., Marcelja, S., 1986. Double-layer interaction in the primitive model and the
corresponding Poisson-Boltzmann description. Journal of Physical Chemistry 90, 1230–1232.
Kjellander, R., Marcelja, S., Pashley, R.M., Quirk, J.P., 1988a. Double-layer ion correlation
forces restrict calcium-clay swelling. Journal of Physical Chemistry 92, 6489–6492.
Kjellander, R., Marcelja, S., Quirk, J.P., 1988b. Attractive double-layer interactions between
calcium clay particles. Journal of Colloid and Interface Science 126, 194–211.
Larsen, A.E., Grier, D.G., 1997. Like-charge attractions in metastable colloidal crystallites.
Nature 385, 230–233.
Liebau, F., 1985. Structural Chemistry of Silicates: Structure, Bonding, and Classification.
Springer, Berlin.
Maggion, R., Bonnamy, S., Levitz, P., Van Damme, H., 1996. A scaling model of the mi-
crostructural evolution in C
3
S/C–S–H pastes. In: Jennings, H., Kropp, J., Scrivener, K.
(Eds.), The Modeling of Microstructure and its Potential for Studying Transport Properties
and Durability. NATO ASI Series E: Applied Sciences, vol. 304. Kluwer Academic Pub-
lishers, Dordrecht, pp. 137–155.
Merlino, S., Bonaccorsi, E., Armbrumster, T., 2001. The real structure of tobermorite 11
A: normal and anomalous forms. European Journal of Mineralogy 13, 577–590.
Nachbaur, L., Nkinamubanzi, P.C., Nonat, A., Mutin, J.C., 1998. Electrokinetic properties
which control the coagulation of silicate cement suspensions during early age hydration.
Journal of Colloid and Interface Science 202, 261–268.
Neville, A.M., 1963. Properties of Concrete. Pitman, London.
Nonat, A., Lecoq, X., 1998. The structure, stoichiometry and properties of C–S–H prepared
by C
3
S hydration under controlled conditions. In: Colombet, P., Grimmer, A.R., Zanni,
H., Sozzani, P. (Eds.), Nuclear Magnetic Resonance Spectroscopy of Cement-Based Ma-
terials. Springer, Berlin, pp. 197–207.
Pellenq, R.J.-M., Caillol, J.M., Delville, A., 1997b. Electrostatic attraction between two charged
surfaces: a (N,V,T) Monte Carlo simulation. Journal of Physical Chemistry 101, 8584–8594.
Pellenq, R.J.-M., Delville, A., Van Damme, H., 1997a. Cohesive and swelling behaviour
of charged interfaces: a (N,V,T) Monte-Carlo study. In: McEnaney, B., Mays,
T.J., Rouquerol, J., Rodriguez-Reinoso, F., Sing, K.S.W., Unger, K.K. (Eds.), Charac-
terization of Porous Solids IV. The Royal Society of Chemistry, Cambridge, pp. 596–603.
Chapter 13.3: Cement Hydrates1126