173
Finally, Theorem 2.2 follows easily from Theorem 2.1. Since the solution u of (1)
exists globally on [0, oo) x R
N
, by applying Theorem 2.1 with e = 1/2 for each T > 0, we
deduce that
K*)l|»<C(JV,p)(T-t)-
1
/<''-
1
\ T/2<t<T<oo. (19)
For each fixed t
0
> 0, applying (19) with T = 2t
0
and t
—
t
0
yields
and the result follows.
References
D.
Andreucci, M. A. Herrero, J. J. L. Velazquez, Liouville theorems and blow up
behaviour in semilinear reaction diffusion systems, Ann. Inst. Henri Poincare 14,
No.
1 (1997), 1-53.
M.-F.
Bidaut-Veron, Initial blow-up for the solutions of a semilinear parabolic equa-
tion with source term, in: Equations aux derivees partielles et applications, articles
dedies a Jacques-Louis Lions. Gauthier-Villars, Paris. (1998) pp. 189-198.
S. Bricher, Blow-up behaviour for nonlinearly perturbed semilinear parabolic prob-
lems,
Proc. Royal Soc. Edinburgh 124A (1994), 947-969.
M. Fila, P. Souplet, F. Weissler, Linear and nonlinear heat equations in L
p
6
spaces
and universal bounds for global solutions, Math. Ann. 320 (2001), 87-113.
V. A. Galaktionov, S. A. Posashkov, The equation u
t
= u
xx
+ u
13
. Localization,
asymptotic behavior of unbounded solutions. Akad. Nauk SSSR Inst. Prikl. Mat.
Preprint 1985, n°97, 30 pp (in Russian).
Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math.
Phys.
103 (1986),
415-421.
Y. Giga, R. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,
Comm. Pure Appl. Math. 38 (1985), 297-319.
Y. Giga, R. Kohn, Characterizing blowup using similarity variables, Indiana Univ.
Math. J. 36 (1987), 1-40.
C. Gui, W.-M. Ni, X. Wang, Further study on a nonlinear heat equation, J. Differ.
Eq. 169 (2001), 568-613.
A. Haraux, F. B. Weissler, Non-uniqueness for a semilinear initial value problem,
Indiana Univ. Math. J. 31 (1982), 167-189.
M. A. Herrero, J. J. L. Velazquez, Blow up behaviour of one dimensional semilinear
parabolic equations, Ann. Inst. H. Poincare, Anal. Nonlin. 10 (1993), No. 2, 131-189.