Infinite and Semi-infinite Spatial Domains 595
> U(omega,0):=simplify(value(%));
U(ω, 0) := e
−
1
4
ω
2
√
π (9.35)
> V(omega,0):=Int(g(x)*exp(−I*omega*x),x=−infinity..infinity);V(omega,0):=value(%):
V(ω, 0) :=
∞
−∞
0dx (9.36)
> V(omega,0):=simplify(value(%));
V(ω, 0) := 0 (9.37)
Fourier transform of solution
> U(omega,t):=U(omega,0)*cos(omega*c*t)+V(omega,0)*sin(omega*c*t)/(omega*c);
U(ω, t) := e
−
1
4
ω
2
√
π cos
1
2
ωt
(9.38)
Fourier integral solution
> u(x,t):=Int(U(omega,t)/(2*Pi)*exp(I*omega*x),omega=−infinity..infinity);
u(x, t) :=
∞
−∞
1
2
e
−
1
4
ω
2
cos
1
2
ωt
e
Iωx
√
π
dω (9.39)
> u(x,t):=invfourier(U(omega,t),omega,x);
u(x, t) := cosh(tx)e
−
1
4
t
2
−x
2
(9.40)
ANIMATION
> animate(u(x,t),x=−5..5,t=0..5,thickness=3);
The preceding animation command shows the spatial-time-dependent solution of the wave
amplitude u(x, t). The animation sequence here and in Figure 9.5 shows snapshots of the
animation at times t = 0, 1, 2, 3, 4, 5.
ANIMATION SEQUENCE
> u(x,0):=subs(t=0,u(x,t)):u(x,1):=subs(t=1,u(x,t)):
> u(x,2):=subs(t=2,u(x,t)):u(x,3):=subs(t=3,u(x,t)):