The Diffusion Equation in Two Spatial Dimensions 383
Eigenfunction expansion
> u(r,theta,t):=Sum(Sum(u[m,n](r,theta,t),m=0..infinity),n=0..infinity);
u(r,θ,t):=
∞
n=0
⎛
⎜
⎝
∞
m=0
C(m, n)e
−
1
25
λ
2
m,n
t
BesselJ(m, λ
m,n
r)
√
2 sin(mθ)
1
0
BesselJ(m, λ
m,n
r)
2
r dr
√
π
⎞
⎟
⎠
(6.94)
The Fourier coefficients C(m, n) are to be determined from the initial condition function
u(r, θ, 0) = f(r, θ). We consider the special case where
> f(r,theta):=(r−rˆ3/3)*sin(theta);
f(r, θ) :=
r −
1
3
r
3
sin(θ) (6.95)
At time t = 0, we have
> f(r,theta)=eval(subs(t=0,u(r,theta,t)));
r −
1
3
r
3
sin(θ) =
∞
n=0
⎛
⎜
⎝
∞
m=0
C(m, n)BesselJ(m, λ
m,n
r)
√
2 sin(mθ)
1
0
BesselJ(m, λ
m,n
r)
2
rdr
√
π
⎞
⎟
⎠
(6.96)
This is the double Fourier series expansion of f(r, θ). From Section 6.8, the Fourier coefficients
C
(
m, n
)
were evaluated by taking the double inner product of the initial condition function
f(r, θ) with respect to the preceding corresponding orthonormalized eigenfunctions.
Because f(r, θ) depends on sin(mθ) for the m = 1 case, then, from the given orthogonality
statement for θ, only the m = 1 solution survives here, and we set
> Theta[1](theta):=subs(m=1,eval(Theta[m](theta)));
1
(θ) :=
√
2 sin(θ)
√
π
(6.97)
Eigenvalues λ
1,n
are the roots of the eigenvalue equation
> subs({m=1,r=a},diff(BesselJ(mu[m],lambda[m,n]*r),r))=0;
−BesselJ(2,λ
1,n
) +
BesselJ(1,λ
1,n
)
λ
1,n
λ
1,n
= 0 (6.98)
For m = 1, we have the Bessel identity
> subs(m=1,BesselJ(m−1,lambda[m,n]*a)=2*m*BesselJ(m,lambda[m,n]*a)/(lambda[m,n]*a)
−BesselJ(m+1,lambda[m,n]*a));
BesselJ(0,λ
1,n
) =
2BesselJ(1,λ
1,n
)
λ
1,n
−BesselJ(2,λ
1,n
) (6.99)