The Diffusion Equation in Two Spatial Dimensions 377
The Fourier coefficients C(m, n) are to be determined from the initial condition function
u(r, θ, 0) = f(r, θ). We consider the special case where
> f(r,theta):=(r−rˆ3)*sin(theta);
f(r, θ) := (r −r
3
) sin(θ) (6.71)
At time t = 0, we have
> f(r,theta)=eval(subs(t=0,u(r,theta,t)));
(r −r
3
) sin(θ) =
∞
n=1
⎛
⎜
⎝
∞
m=1
2 C(m, n) BesselJ(2 m −1,λ
m,n
r) sin((2 m −1)θ)
1
0
BesselJ(2 m −1,λ
m,n
r))
2
r dr
√
π
⎞
⎟
⎠
(6.72)
This is the double Fourier series expansion of f(r, θ). From Section 6.8, the Fourier coefficients
C(m, n) were evaluated by taking the double inner product of the initial condition function
f(r, θ) with respect to the corresponding orthonormalized eigenfunctions given earlier.
Because f(r, θ) depends on sin((2 m −1)θ) for the case for m = 1, then, from the preceding
orthogonality statement for θ, only the m = 1 solution survives here, and we set
> Theta[1](theta):=subs(m=1,eval(Theta[m](theta)));
1
(θ) :=
2 sin(θ)
√
π
(6.73)
Eigenvalues λ
1,n
are the roots of the eigenvalue equation
> subs({m=1,r=a},BesselJ(mu[m],lambda[m,n]*r))=0;
BesselJ(1,λ
1,n
) = 0 (6.74)
Evaluation of the orthonormalized eigenfunctions for m = 1 yields
> R[1,n](r):=eval(subs(m=1,BesselJ(mu[m],lambda[m,n]*r)/sqrt(expand(int(subs(m=1,
BesselJ(mu[m],lambda[m,n]*r))ˆ2*r,r=0..a)))));
R
1,n
(r) :=
2 BesselJ(1,λ
1,n
r)
2 BesselJ(0,λ
1,n
)
2
−
4 BesselJ(0,λ
1,n
) BesselJ(1,λ
1,n
)
λ
1,n
+2 BesselJ(1,λ
1,n
)
2
(6.75)
Substitution of the preceding eigenvalue equation simplifies this
> R[1,n](r):=radsimp(subs(BesselJ(1,lambda[1,n]*a)=0,R[1,n](r)));
R
1,n
(r) :=
BesselJ(1,λ
1,n
r)
√
2
BesselJ(0,λ
1,n
)
(6.76)