Файлы
Обратная связь
Для правообладателей
Найти
Анищенко В.С. Нелинейные эффекты в хаотических и стохастических системах
Файлы
Академическая и специальная литература
Математика
Нелинейная динамика
Назад
Скачать
Подождите немного. Документ загружается.
d
v
/
d
t
˙
x
=
v
=
−
1
γ
∂
U
(
x
)
∂
x
+
s
2
k
B
T
γ
ξ
(
t
)
,
p
2
(
x,
t
|
x
0
,
t
0
)
∂
p
2
(
x,
t
|
x
0
,
t
0
)
∂
t
=
−
∂
∂
x
−
1
γ
∂
U
∂
x
p
2
+
k
B
T
γ
∂
2
p
2
∂
x
2
.
p
s
j
s
x
=
x
A
>
x
2
=
0
p
s
(
x
A
)
=
0
j
s
x
1
0
=
−
d
d
x
−
1
γ
∂
U
∂
x
p
s
+
k
B
T
γ
d
2
p
s
d
x
2
+
j
s
δ
(
x
−
x
1
)
.
x
1
p
s
(
x
<
x
1
)
=
p
eq
(
x
)
x
1
lim
ε
→
+0
p
s
(
x
1
+
ε
)
=
p
eq
(
x
1
)
x
1
x
A
x
2
[
x
1
,
x
A
]
−
1
γ
∂
U
∂
x
p
s
k
B
T
γ
d
d
x
p
s
=
j
s
Θ
(
x
−
x
1
)
.
1
/p
eq
(
x
)
d
d
x
p
s
(
x
)
p
eq
(
x
)
=
−
j
s
1
p
eq
(
x
)
γ
k
B
T
Θ
(
x
−
x
1
)
.
p
s
(
x
)
=
−
j
s
γ
k
B
T
p
eq
(
x
)
Z
x
d
x
0
1
p
eq
(
x
0
)
Θ
(
x
0
−
x
1
)
.
p
s
1
=
j
s
γ
k
B
T
Z
x
A
x
1
d
x
0
1
p
eq
(
x
0
)
.
r
K
=
k
B
T
γ
R
0
−∞
d
x
0
p
s
(
x
0
)
1
R
x
A
x
1
d
x
0
(
p
eq
(
x
0
))
−
1
.
k
TP
x
=
x
1
p
s
p
eq
x
1
x
x
2
= 0
x
2
U
(
x
)
=
U
(
x
b
)
−
(
m/
2)
ω
2
b
(
x
−
x
b
)
2
±∞
r
K
=
ω
b
γ
ω
0
2
π
exp
−
∆U
k
B
T
.
∝
1
/γ
γ
>>
ω
b
x
(
t
)
x
0
t
0
=
0
x
0
∈
(
a,
b
)
P
a,b
(
t,
x
0
)
=
b
Z
a
p
2
(
x,
t
|
x
0
)
d
x
x
(
t
)
(
a,
b
)
t
>
0
x
=
a
x
=
b
p
2
(
x,
t
|
a
)
=
p
2
(
x,
t
|
b
)
=
0
,
x
∈
(
a,
b
)
.
P
a,b
(
t,
a
)
=
P
a,b
(
t,
b
)
=
0
.
j
(
x,
t
)
j
(
x
=
a,
t
)
=
0
x
t
>
t
0
Z
d
x
p
2
(
y
,
t
y
|
x,
t
x
)
L
F
x
p
2
(
x,
t
x
|
x
0
,
t
0
)
=
Z
d
x
p
2
(
x,
t
x
|
x
0
,
t
0
)
L
B
x
p
2
(
y
,
t
y
|
x,
t
x
)
,
−∞
b
p
2
(
y
,
t
y
|
x,
t
x
)
j
(
x,
t
)
=
p
2
(
x,
t
x
|
x
0
,
t
0
)
∂
∂
x
p
2
(
y
,
t
y
,
|
x,
t
x
)
,
x
a
j
(
a,
t
) =
0
∂
p
2
(
x,
t
|
x
0
,
t
0
)
∂
x
0
x
0
=
a
=
0
.
∂
P
a,b
(
t,
x
0
)
∂
x
0
x
0
=
a
=
0
.
P
a,b
(
t,
x
0
)
x
0
P
a,b
τ
lim
τ
→
0
1
τ
(1
−
P
a,b
(
τ
,
x
0
)
)
=
0
,
x
0
6
=
a,
b
.
−
∂
∂
t
0
P
a,b
=
∂
∂
t
P
a,b
(
t,
x
0
)
=
K
1
(
x
0
)
∂
∂
x
0
P
a,b
+
K
2
(
x
0
)
∂
2
∂
x
2
0
P
a,b
.
t
P
a,b
(
t,
x
0
)
P
a,b
(
t
→
∞
,
x
0
)
=
0
W
a,b
(
t,
x
0
)
=
1
−
P
a,b
(
t,
x
0
)
W
a,b
(
t
→
∞
,
x
0
)
=
W
as
a,b
((
x
0
)
=
1
x
0
b
a
b
W
as
a,b
(
b
)
=
1
a
b
W
as
a,b
(
a
)
= 0
∂
W
as
a,b
(
x
0
)
/∂
t
=
0
W
as
a,b
(
x
0
)
=
x
0
R
a
d
x
exp
−
R
x
K
1
K
2
d
x
0
b
R
a
d
x
exp
−
R
x
K
1
K
2
d
x
0
.
t
W
a,b
(
t,
x
0
)
[
a,
b
]
t
0
t
w
a,b
(
x
0
,
t
)
∆t
=
∂
W
a,b
(
t,
x
0
)
∂
t
∆t
=
−
∂
P
a,b
∂
t
∆t
.
∂
∂
t
w
a,b
=
K
1
(
x
0
)
∂
∂
x
0
w
a,b
+
K
2
(
x
0
)
∂
2
∂
x
2
0
w
a,b
,
w
a,b
(
x
0
,
t
=
0)
=
0
,
x
0
∈
(
a,
b
)
,
w
a,b
(
a,
t
)
=
w
a,b
(
b,
t
)
=
δ
(
t
)
,
a
∂
w
a,b
(
x
0
,
t
)
∂
x
0
(
x
0
=
a
)
=
0
.
T
a,b
(
x
0
)
=
∞
Z
0
tw
a,b
(
x
0
,
t
)
d
t.
T
a,b
(
x
0
)
=
∞
Z
0
P
a,b
(
t,
x
0
)
d
t.
[
a,
b
]
h
T
a,b
i
x
0
=
∞
Z
0
P
a,b
(
t,
x
0
)
P
(
x
0
)
d
t
d
x
0
.
T
a,b
(
x
0
)
t
∞
Z
0
∂
∂
t
P
a,b
d
t
=
P
a,b
(
∞
,
x
0
)
−
P
a,b
(0
,
x
0
)
=
−
1
.
−
1
=
K
1
(
x
0
)
∂
∂
x
0
T
a,b
(
x
0
)
+
K
2
(
x
0
)
∂
2
∂
x
2
0
T
a,b
(
x
0
)
.
[
a,
b
]
T
a,b
(
a
)
=
T
a,b
(
b
)
=
0
.
x
=
a
∂
T
a,b
(
x
0
)
∂
x
0
x
0
=
a
=
0
.
T
(
n
)
a,b
=
−
∞
Z
0
t
n
∂
∂
T
W
a,b
(
t,
x
0
,
t
0
)
d
t.
T
(0)
a,b
=
1
T
a,b
=
T
(1)
a,b
−
nT
(
n
−
1)
a,b
=
K
1
(
x
0
)
∂
∂
x
0
T
(
n
)
a,b
(
x
0
)
+
K
2
(
x
0
)
∂
2
∂
x
2
0
T
(
n
)
a,b
(
x
0
)
T
(1)
a,b
u
(
n
)
a,b
=
d
T
(
n
)
a,b
d
x
0
,
a
<
b
u
(
n
)
a,b
(
x
0
)
=
exp
(
−
Φ
(
x
0
))
C
n
−
n
x
Z
a
T
(
n
−
1)
a,b
(
x
0
)
K
2
(
x
0
)
exp
(
Φ
(
x
0
))d
x
0
,
C
n
Φ
(
x
)
=
Z
x
K
1
(
y
)
K
2
(
y
)
d
y
.
x
=
a
b
u
(
n
)
a,b
(
a
)
=
0
T
(
n
)
a,b
(
b
)
=
0
T
(
n
)
a,b
(
x
0
)
=
n
b
Z
x
0
exp
(
−
Φ
(
x
))
Z
x
a
T
(
n
−
1)
a,b
K
2
(
x
0
)
exp
(
Φ
(
x
0
))d
x
0
d
x
.
T
(1)
a,b
(
x
0
)
=
b
Z
x
0
d
x
exp
(
−
Φ
(
x
))
x
R
a
d
x
0
exp
(
Φ
(
x
0
))
K
2
(
x
0
)
.
a
b
T
(
n
)
a,b
(
x
0
)
=
C
n
x
0
Z
a
exp
(
−
Φ
(
x
))
d
x
−
n
x
0
Z
a
exp
(
−
Φ
(
x
))
Z
x
a
T
(
n
−
1)
a,b
K
2
(
x
0
)
exp
(
Φ
(
x
0
))d
x
0
d
x,
C
n
T
(
n
)
a,b
(
b
)
=
0
(
−∞
,
b
)
x
=
b
a
−∞
x
=
∞
∆U
k
B
T
x
=
x
1
x
0
x
2
T
−∞
,b
(
x
0
)
=
Q
(
b
)
1
r
K
,
Q
(
b
)
b
x
2
b
=
x
2
Q
=
1
/
2
‹
1
2
...
9
10
11
12
13
14
15
...
53
54
›